cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298102 The first of five consecutive integers the sum of which is equal to the sum of five consecutive prime numbers.

This page as a plain text file.
%I A298102 #23 Jun 22 2019 16:50:53
%S A298102 77,279,293,327,347,353,401,437,509,641,675,683,785,803,839,885,947,
%T A298102 961,1169,1177,1193,1239,1325,1337,1395,1433,1461,1501,1545,1639,1683,
%U A298102 1715,1731,1777,1809,1915,1955,1989,2031,2059,2139,2145,2345,2387,2393,2431
%N A298102 The first of five consecutive integers the sum of which is equal to the sum of five consecutive prime numbers.
%C A298102 Also: Number m such that 5 * m + 10 is the sum of 5 consecutive primes. - _David A. Corneth_, Jan 12 2018
%H A298102 Colin Barker, <a href="/A298102/b298102.txt">Table of n, a(n) for n = 1..1000</a>
%e A298102 77 is in the sequence because 77+78+79+80+81 = 395 = 71+73+79+83+89.
%t A298102 p = {2, 3, 5, 7, 11}; lst = {}; While[p[[1]] < 3001, t = Plus @@ p; If[Mod[t, 10] == 5, AppendTo[lst, (t - 10)/5]]; p = Join[Rest@p, {NextPrime[p[[-1]]]}]]; lst (*  _Robert G. Wilson v_, Jan 14 2018 *)
%t A298102 Select[(#-10)/5&/@(Total/@Partition[Prime[Range[400]],5,1]),IntegerQ] (* _Harvey P. Dale_, Jun 22 2019 *)
%o A298102 (PARI) L=List(); forprime(p=2, 2500, q=nextprime(p+1); r=nextprime(q+1); s=nextprime(r+1); t=nextprime(s+1); u=p+q+r+s+t; if((u-10)%5==0, listput(L, (u-10)\5))); Vec(L)
%o A298102 (PARI) upto(n) = my(res = List(), pr = primes(5), s = vecsum(pr)); while(pr[5] < n, if(s == 5 * pr[3], listput(res, pr[1])); lp = nextprime(pr[5] + 1); s += (lp - pr[1]); for(i = 1, 4, pr[i] = pr[i+1]); pr[5] = lp); res \\ _David A. Corneth_, Jan 12 2018
%Y A298102 Cf. A054643, A298073, A298103.
%K A298102 nonn
%O A298102 1,1
%A A298102 _Colin Barker_, Jan 12 2018
%E A298102 New name by _David A. Corneth_, Jan 12 2018