This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298110 #5 Feb 09 2018 17:36:18 %S A298110 3,4,5,6,7,9,11,13,14,15,17,18,20,21,24,26,27,28,31,32,33,36,37,38,39, %T A298110 40,42,45,47,48,49,50,51,53,55,56,57,58,59,61,63,65,67,68,69,71,72,73, %U A298110 74,76,79,81,83,85,86,87,89,90,93,95,97,99,100,101,103 %N A298110 Solution (b(n)) of the near-complementary equation a(n) = a(1)*b(n) - a(0)*b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments. %C A298110 The sequence (a(n)) generated by the equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + n, with initial values as shown, includes duplicates; e.g. a(18) = a(19) = 51. If the duplicates are removed from (a(n)), the resulting sequence and (b(n)) are complementary. Conjectures: %C A298110 (1) 1 <= b(k) - b(k-1) <= 3 for k>=1; %C A298110 (2) if d is in {1,2,3}, then b(k) = b(k-1) + d for infinitely many k. %C A298110 *** %C A298110 See A298000 and A297830 for guides to related sequences. %H A298110 Clark Kimberling, <a href="/A298110/b298110.txt">Table of n, a(n) for n = 0..2000</a> %e A298110 a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 8. %e A298110 Complement: A298110 = (3,4,5,6,7,9,11,13,14,15,17, ...) %t A298110 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298110 a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; %t A298110 a[n_] := a[1]*b[n] - a[0]*b[n - 1] + n; %t A298110 Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 3000}]; %t A298110 Table[a[n], {n, 0, 150}] (* A297999 *) %t A298110 Table[b[n], {n, 0, 150}] (* A298110 *) %t A298110 (* _Peter J. C. Moses_, Jan 16 2018 *) %Y A298110 Cf. A297999, A298000, A297830. %K A298110 nonn,easy %O A298110 0,1 %A A298110 _Clark Kimberling_, Feb 09 2018