A298121 a(n) is the number of triangles (up to congruence) with integer coordinates that have perimeter strictly less than n.
1, 3, 5, 11, 18, 29, 44, 70, 94, 136, 177, 243, 303, 386, 485, 611, 738, 914, 1093, 1312, 1529, 1831, 2114, 2488, 2854, 3310, 3756, 4307, 4880, 5520, 6187, 6995, 7800, 8738, 9674, 10797, 11875, 13161, 14437, 15901, 17388, 19087, 20797, 22706, 24618, 26811
Offset: 4
Keywords
Examples
All a(7) = 11 triangles with integer coordinates and perimeter less than 7 are congruent to triangles with coordinates: (0, 0), (0, 1), (1, 0) - with perimeter ~3.41; or (0, 0), (1, 2), (0, 1) - with perimeter ~4.65; or (0, 0), (0, 2), (1, 1) - with perimeter ~4.82; or (0, 0), (0, 2), (1, 0) - with perimeter ~5.23; or (0, 0), (1, 2), (2, 1) - with perimeter ~5.88; or (0, 0), (2, 2), (0, 1) - with perimeter ~6.06; or (0, 0), (1, 3), (0, 1) - with perimeter ~6.39; or (0, 0), (0, 2), (2, 1) - with perimeter ~6.47; or (0, 0), (1, 3), (0, 2) - with perimeter ~6.57; or (0, 0), (0, 3), (1, 1) - with perimeter ~6.65; or (0, 0), (0, 2), (2, 0) - with perimeter ~6.82.
Links
- Peter Kagey, Table of n, a(n) for n = 4..150
- Peter Kagey, Integer Triangles with perimeter less than n, Programming Puzzles & Code Golf Stack Exchange.
Crossrefs
Cf. A298079.
Formula
a(n) = Sum_{k=3..n-1} A298079(k).