cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298135 Number of nX4 0..1 arrays with every element equal to 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.

This page as a plain text file.
%I A298135 #4 Jan 13 2018 11:12:18
%S A298135 0,2,3,10,20,68,185,561,1600,4856,14490,43334,130046,390291,1172586,
%T A298135 3523139,10593181,31854446,95807649,288198019,867005085,2608469794,
%U A298135 7848188504,23614061363,71053102045,213798191069,643325960937
%N A298135 Number of nX4 0..1 arrays with every element equal to 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
%C A298135 Column 4 of A298139.
%H A298135 R. H. Hardin, <a href="/A298135/b298135.txt">Table of n, a(n) for n = 1..210</a>
%F A298135 Empirical: a(n) = 5*a(n-1) -5*a(n-2) +a(n-3) -19*a(n-4) +15*a(n-5) +77*a(n-7) -84*a(n-8) +104*a(n-9) -175*a(n-10) +237*a(n-11) -444*a(n-12) +166*a(n-13) -252*a(n-14) +783*a(n-15) -239*a(n-16) -923*a(n-17) +47*a(n-18) -1198*a(n-19) +4530*a(n-20) -2018*a(n-21) +8752*a(n-22) -12503*a(n-23) +11509*a(n-24) -11694*a(n-25) +12104*a(n-26) -39091*a(n-27) +11361*a(n-28) +13063*a(n-29) +25473*a(n-30) -18499*a(n-31) -14521*a(n-32) +40263*a(n-33) -2644*a(n-34) -22026*a(n-35) -35689*a(n-36) +31132*a(n-37) +18644*a(n-38) +6559*a(n-39) -15323*a(n-40) -3234*a(n-41) -21417*a(n-42) -5870*a(n-43) +16627*a(n-44) +9301*a(n-45) +860*a(n-46) -5387*a(n-47) +839*a(n-48) +447*a(n-49) +1998*a(n-50) -1505*a(n-51) -218*a(n-52) -195*a(n-53) +391*a(n-54) -74*a(n-55) -24*a(n-56) -48*a(n-57) +28*a(n-58) +8*a(n-59) -4*a(n-60) for n>61
%e A298135 Some solutions for n=7
%e A298135 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
%e A298135 ..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
%e A298135 ..0..1..0..1. .1..0..1..0. .1..0..1..0. .1..0..0..1. .1..0..0..1
%e A298135 ..0..0..0..1. .1..0..1..0. .1..1..0..0. .1..1..1..0. .1..1..1..0
%e A298135 ..0..1..1..0. .0..1..1..0. .1..0..1..0. .0..0..0..1. .1..0..1..0
%e A298135 ..1..0..0..1. .1..0..1..0. .1..0..1..0. .0..1..1..0. .1..0..0..1
%e A298135 ..1..1..1..1. .1..1..0..0. .1..1..0..0. .1..1..0..0. .1..1..1..1
%Y A298135 Cf. A298139.
%K A298135 nonn
%O A298135 1,2
%A A298135 _R. H. Hardin_, Jan 13 2018