This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298170 #17 Jul 27 2024 09:30:03 %S A298170 2,6,8,11,14,19,22,24,26,30,32,38,41,42,44,49,51,54,55,59,66,69,71,72, %T A298170 77,83,84,86,90,92,93,96,99,101,109,112,113,116,119,121,122,130,131, %U A298170 138,140,143,147,151,152,154,156,158,161,162,165,170,174,181,184 %N A298170 Solution (b(n)) of the system of 3 complementary equations in Comments. %C A298170 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298170 a(n) = least new; %C A298170 b(n) = least new > = a(n) + n + 1; %C A298170 c(n) = a(n) + b(n); %C A298170 where "least new k" means the least positive integer not yet placed. %C A298170 *** %C A298170 The sequences a,b,c partition the positive integers. %C A298170 *** %C A298170 Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then %C A298170 x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67)) %C A298170 x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1. %C A298170 (The same limits occur in A298868 and A297469.) %H A298170 Clark Kimberling, <a href="/A298170/b298170.txt">Table of n, a(n) for n = 0..1000</a> %e A298170 n: 0 1 2 3 4 5 6 7 8 9 10 %e A298170 a: 1 4 5 7 9 12 15 16 17 20 21 %e A298170 b: 2 6 8 11 14 19 22 24 26 30 32 %e A298170 c: 3 10 13 18 23 31 37 40 43 50 53 %t A298170 z=200; %t A298170 mex[list_,start_]:=(NestWhile[#+1&,start,MemberQ[list,#]&]); %t A298170 a={1};b={2};c={3};n=0; %t A298170 Do[{n++; %t A298170 AppendTo[a,mex[Flatten[{a,b,c}],If[Length[a]==0,1,Last[a]]]], %t A298170 AppendTo[b,mex[Flatten[{a,b,c}],Last[a]+n+1]], %t A298170 AppendTo[c,Last[a]+Last[b]]},{z}]; %t A298170 Take[a,100] (* A297838 *) %t A298170 Take[b,100] (* A298170 *) %t A298170 Take[c,100] (* A298418 *) %t A298170 (* _Peter J. C. Moses_, Apr 23 2018 *) %Y A298170 Cf. A299634, A298868, A297469, A297838, A298418. %K A298170 nonn,easy %O A298170 0,1 %A A298170 _Clark Kimberling_, Apr 25 2018