cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298185 Number of nX6 0..1 arrays with every element equal to 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 5, 5, 6, 7, 10, 14, 20, 29, 44, 68, 106, 166, 262, 416, 663, 1059, 1695, 2718, 4365, 7018, 11294, 18190, 29317, 47278, 76280, 123124, 198806, 321106, 518776, 838315, 1354929, 2190261, 3541074, 5725655, 9258890, 14973726, 24217684, 39170801
Offset: 1

Views

Author

R. H. Hardin, Jan 14 2018

Keywords

Comments

Column 6 of A298187.

Examples

			Some solutions for n=7
..0..0..0..0..1..1. .0..0..0..1..1..1. .0..0..0..0..0..0. .0..0..0..1..1..1
..0..0..0..0..1..1. .0..0..0..1..1..1. .0..0..0..0..0..0. .0..0..0..1..1..1
..0..0..0..0..1..1. .0..0..0..1..1..1. .1..1..1..1..1..1. .0..0..1..0..1..1
..0..0..0..0..1..1. .0..0..1..0..1..1. .1..1..1..1..1..1. .1..1..0..1..0..0
..0..0..0..0..1..1. .1..1..0..1..0..0. .1..1..1..1..1..1. .1..1..1..0..0..0
..0..0..0..0..1..1. .1..1..1..0..0..0. .1..1..1..1..1..1. .1..1..1..0..0..0
..0..0..0..0..1..1. .1..1..1..0..0..0. .1..1..1..1..1..1. .1..1..1..0..0..0
		

Crossrefs

Cf. A298187.

Formula

Empirical: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-7) for n>8

A298186 Number of nX7 0..1 arrays with every element equal to 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 8, 8, 9, 10, 14, 19, 27, 38, 58, 90, 142, 225, 362, 587, 959, 1572, 2587, 4270, 7067, 11718, 19462, 32366, 53887, 89799, 149757, 249902, 417231, 696895, 1164423, 1946165, 3253513, 5440154, 9097892, 15216993, 25454538, 42583510, 71244379
Offset: 1

Views

Author

R. H. Hardin, Jan 14 2018

Keywords

Comments

Column 7 of A298187.

Examples

			Some solutions for n=7
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .0..0..0..1..0..1..1. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .1..1..1..0..1..0..0. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .1..1..1..1..0..0..0. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .1..1..1..1..0..0..0. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .1..1..1..1..0..0..0. .0..0..0..1..1..0..0
		

Crossrefs

Cf. A298187.

Formula

Empirical: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-10) +a(n-11) for n>12

A298184 Number of n X n 0..1 arrays with every element equal to 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 1, 3, 5, 10, 19, 41, 81, 196, 474, 1315, 3871, 15716, 68291, 339947, 1851904, 11717321, 86766476
Offset: 1

Views

Author

R. H. Hardin, Jan 14 2018

Keywords

Comments

Diagonal of A298187.

Examples

			Some solutions for n=7
..0..0..0..1..1..1..1. .0..0..0..0..0..0..0. .0..0..0..1..1..0..0
..0..0..0..1..1..1..1. .0..0..0..0..0..0..0. .0..0..0..1..1..0..0
..0..0..0..1..1..1..1. .0..0..0..0..0..0..0. .0..0..0..1..1..0..0
..0..0..0..1..1..1..1. .0..0..0..0..0..0..0. .0..0..0..1..1..0..0
..0..0..0..1..1..1..1. .0..0..0..0..0..0..0. .0..0..0..1..1..0..0
..0..0..0..1..1..1..1. .1..1..1..1..1..1..1. .0..0..0..1..1..0..0
..0..0..0..1..1..1..1. .1..1..1..1..1..1..1. .0..0..0..1..1..0..0
		

Crossrefs

Cf. A298187.
Showing 1-3 of 3 results.