cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298198 Number of Eulerian cycles in the graph Cartesian product of C_n and a double edge.

This page as a plain text file.
%I A298198 #17 Feb 16 2025 08:33:53
%S A298198 4,40,320,2368,16832,116608,793088,5318656,35271680,231786496,
%T A298198 1511653376,9795518464,63126683648,404881506304,2586017398784,
%U A298198 16456474427392,104381066510336,660139718213632,4163958223142912,26202468819927040,164527129801785344
%N A298198 Number of Eulerian cycles in the graph Cartesian product of C_n and a double edge.
%C A298198 When n = 2 the graph is the Cartesian product of two double edges.
%C A298198 a(n) is divisible by 2^(n + 1).
%H A298198 Andrew Howroyd, <a href="/A298198/b298198.txt">Table of n, a(n) for n = 1..500</a>
%H A298198 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerianCycle.html">Eulerian Cycle</a>
%H A298198 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (14, -60, 72).
%F A298198 a(n) = 14*a(n-1) - 60*a(n-2) + 72*a(n-3) for n > 3.
%F A298198 G.f.: 4*x*(1 - 4*x)/((1 - 2*x)*(1 - 6*x)^2).
%o A298198 (PARI) Vec(4*(1 - 4*x)/((1 - 2*x)*(1 - 6*x)^2) + O(x^30))
%Y A298198 Row 2 of A298117.
%K A298198 nonn
%O A298198 1,1
%A A298198 _Andrew Howroyd_, Jan 14 2018