This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298202 #26 Jun 15 2025 20:56:12 %S A298202 1,16,102400,40823664148480000, %T A298202 4024143600922674552523331296813921054228480000000000 %N A298202 Number of Eulerian cycles in the n-Sierpinski gasket graph. %C A298202 A level 1 SierpiĆski triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. %C A298202 Different starting points and directions do not make two circuits distinct. - _Allan Bickle_, Aug 06 2024 %C A298202 a(6) has 157 decimal digits. - _Andrew Howroyd_, Sep 10 2019 %H A298202 Andrew Howroyd, <a href="/A298202/b298202.txt">Table of n, a(n) for n = 1..7</a> %H A298202 A. Hinz, S. Klavzar, and S. Zemljic, <a href="https://doi.org/10.1016/j.dam.2016.09.024">A survey and classification of Sierpinski-type graphs</a>, Discrete Applied Mathematics 217 3 (2017), 565-600. %H A298202 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerianCycle.html">Eulerian Cycle</a>. %H A298202 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiGasketGraph.html">Sierpinski Gasket Graph</a>. %e A298202 3 example graphs: o %e A298202 / \ %e A298202 o---o %e A298202 / \ / \ %e A298202 o o---o---o %e A298202 / \ / \ / \ %e A298202 o o---o o---o o---o %e A298202 / \ / \ / \ / \ / \ / \ / \ %e A298202 o---o o---o---o o---o---o---o---o %e A298202 Graph: S_1 S_2 S_3 %e A298202 A triangle has a single Eulerian circuit, so a(1) = 1. %e A298202 The level 2 graph has 16 distinct circuits, 12 that reverse at a middle vertex and 4 that don't, so a(2) = 16. %t A298202 NestList[Function[{e, f, g}, {16 e^3 + 48 f e^2, 3 e^3 + (32 f + 8 g) e^2 + 56 f^2 e, e^3 + (30 f + 12 g) e^2 + (156 f^2 + 96 g f) e + 112 f^3}] @@ # &, {1, 0, 0}, 5][[All, 1]] (* _Eric W. Weisstein_, Feb 02 2024 based on code from Andrew Howroyd *) %o A298202 (PARI) %o A298202 P(u)={my([e,f,g]=u); [16*e^3 + 48*f*e^2, 3*e^3 + (32*f + 8*g)*e^2 + 56*f^2*e, e^3 + (30*f + 12*g)*e^2 + (156*f^2 + 96*g*f)*e + 112*f^3]} %o A298202 a(n)={my(u=[1,0,0]); for(n=2, n, u=P(u)); u[1]} \\ _Andrew Howroyd_, Sep 12 2019 %Y A298202 Cf. A246959. %K A298202 nonn %O A298202 1,2 %A A298202 _Eric W. Weisstein_, Jan 14 2018 %E A298202 a(4)-a(5) from _Andrew Howroyd_, Sep 10 2019