cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298212 Smallest n such that A060645(a(n)) = 0 (mod n), i.e., x=A023039(a(n)) and y=A060645(a(n)) is the fundamental solution of the Pell equation x^2 - 5*(n*y)^2 = 1.

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 4, 2, 2, 5, 5, 2, 7, 4, 10, 4, 3, 2, 3, 5, 4, 5, 4, 2, 25, 7, 6, 4, 7, 10, 5, 8, 10, 3, 20, 2, 19, 3, 14, 10, 10, 4, 22, 5, 10, 4, 8, 4, 28, 25, 6, 7, 9, 6, 5, 4, 6, 7, 29, 10, 5, 5, 4, 16, 35, 10, 34, 3, 4, 20, 35, 2, 37, 19, 50
Offset: 1

Views

Author

A.H.M. Smeets, Jan 15 2018

Keywords

Comments

The fundamental solution of the Pell equation x^2 - 5*(n*y)^2 = 1, is the smallest solution of x^2 - 5*y^2 = 1 satisfying y = 0 (mod n).

References

  • Michael J. Jacobson, Jr. and Hugh C. Williams, Solving the Pell Equation, Springer, 2009, pages 1-17.

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = Switch[n, 0, 0, 1, 4, _, 18 b[n - 1] - b[n - 2]];
    a[n_] := For[k = 1, True, k++, If[Mod[b[k], n] == 0, Return[k]]];
    a /@ Range[100] (* Jean-François Alcover, Nov 16 2019 *)
  • Python
    xf, yf = 9, 4
    x, n = 2*xf, 0
    while n < 20000:
        n = n+1
        y1, y0, i = 0, yf, 1
        while y0%n != 0:
            y1, y0, i = y0, x*y0-y1, i+1
        print(n, i)

Formula

a(n) <= n.
a(A000351(n)) = A000351(n).
A023039(a(n)) = A002350(5*n^2).
A060645(a(n)) = A002349(5*n^2).
if n | m then a(n) | a(m).
a(5^m) = 5^m for m>=0.
In general: if p is prime and p = 1 (mod 4) then: a(n) = n iff n = p^m, for m>=0.