cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298250 The first of three consecutive pentagonal numbers the sum of which is equal to the sum of three consecutive primes.

This page as a plain text file.
%I A298250 #17 Dec 25 2022 11:33:18
%S A298250 176,35497,45850,68587,87725,229126,488776,705551,827702,1085876,
%T A298250 1127100,1255380,1732900,1914785,1972840,2453122,2737126,2749297,
%U A298250 2818776,3245026,4598126,5116190,5522882,6180335,6658120,6939126,6958497,7088327,7114437,7140595
%N A298250 The first of three consecutive pentagonal numbers the sum of which is equal to the sum of three consecutive primes.
%H A298250 Robert Israel, <a href="/A298250/b298250.txt">Table of n, a(n) for n = 1..2352</a>
%e A298250 176 is in the sequence because 176+210+247 (consecutive pentagonal numbers) = 633 = 199+211+223 (consecutive primes).
%p A298250 N:= 10^8: # to get all terms where the sums <= N
%p A298250 Res:= NULL:
%p A298250 mmax:= floor((sqrt(8*N-23)-5)/6):
%p A298250 M:= [seq(seq(4*i+j,j=2..3),i=0..mmax/4)]:
%p A298250 M3:= map(m -> 9/2*m^2+15/2*m+6, M):
%p A298250 for i from 1 to nops(M) do
%p A298250 m:= M3[i];
%p A298250   r:= ceil((m-8)/3);
%p A298250   p1:= prevprime(r+1);
%p A298250   p2:= nextprime(p1);
%p A298250   p3:= nextprime(p2);
%p A298250   while p1+p2+p3 > m do
%p A298250     p3:= p2; p2:= p1; p1:= prevprime(p1);
%p A298250   od:
%p A298250   if p1+p2+p3 = m then
%p A298250     Res:= Res, M[i]*(3*M[i]-1)/2;
%p A298250   fi
%p A298250 od:
%p A298250 Res; # Robert Israel, Jan 16 2018
%t A298250 Module[{prs3=Total/@Partition[Prime[Range[10^6]],3,1]},Select[ Partition[ PolygonalNumber[ 5,Range[ 5000]],3,1],MemberQ[ prs3,Total[#]]&]][[All,1]] (* _Harvey P. Dale_, Dec 25 2022 *)
%o A298250 (PARI) L=List(); forprime(p=2, 8000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(72*t-207, &sq) && (sq-15)%18==0, u=(sq-15)\18; listput(L, (3*u^2-u)/2))); Vec(L)
%Y A298250 Cf. A000040, A000326, A054643, A298073, A298168, A298169, A298222, A298223, A298251.
%K A298250 nonn
%O A298250 1,1
%A A298250 _Colin Barker_, Jan 15 2018