This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298250 #17 Dec 25 2022 11:33:18 %S A298250 176,35497,45850,68587,87725,229126,488776,705551,827702,1085876, %T A298250 1127100,1255380,1732900,1914785,1972840,2453122,2737126,2749297, %U A298250 2818776,3245026,4598126,5116190,5522882,6180335,6658120,6939126,6958497,7088327,7114437,7140595 %N A298250 The first of three consecutive pentagonal numbers the sum of which is equal to the sum of three consecutive primes. %H A298250 Robert Israel, <a href="/A298250/b298250.txt">Table of n, a(n) for n = 1..2352</a> %e A298250 176 is in the sequence because 176+210+247 (consecutive pentagonal numbers) = 633 = 199+211+223 (consecutive primes). %p A298250 N:= 10^8: # to get all terms where the sums <= N %p A298250 Res:= NULL: %p A298250 mmax:= floor((sqrt(8*N-23)-5)/6): %p A298250 M:= [seq(seq(4*i+j,j=2..3),i=0..mmax/4)]: %p A298250 M3:= map(m -> 9/2*m^2+15/2*m+6, M): %p A298250 for i from 1 to nops(M) do %p A298250 m:= M3[i]; %p A298250 r:= ceil((m-8)/3); %p A298250 p1:= prevprime(r+1); %p A298250 p2:= nextprime(p1); %p A298250 p3:= nextprime(p2); %p A298250 while p1+p2+p3 > m do %p A298250 p3:= p2; p2:= p1; p1:= prevprime(p1); %p A298250 od: %p A298250 if p1+p2+p3 = m then %p A298250 Res:= Res, M[i]*(3*M[i]-1)/2; %p A298250 fi %p A298250 od: %p A298250 Res; # Robert Israel, Jan 16 2018 %t A298250 Module[{prs3=Total/@Partition[Prime[Range[10^6]],3,1]},Select[ Partition[ PolygonalNumber[ 5,Range[ 5000]],3,1],MemberQ[ prs3,Total[#]]&]][[All,1]] (* _Harvey P. Dale_, Dec 25 2022 *) %o A298250 (PARI) L=List(); forprime(p=2, 8000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(72*t-207, &sq) && (sq-15)%18==0, u=(sq-15)\18; listput(L, (3*u^2-u)/2))); Vec(L) %Y A298250 Cf. A000040, A000326, A054643, A298073, A298168, A298169, A298222, A298223, A298251. %K A298250 nonn %O A298250 1,1 %A A298250 _Colin Barker_, Jan 15 2018