cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298255 Number of nX4 0..1 arrays with every element equal to 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.

This page as a plain text file.
%I A298255 #4 Jan 15 2018 14:57:20
%S A298255 0,2,4,11,23,72,201,597,1705,5141,15305,45558,136366,408269,1222895,
%T A298255 3664732,10990002,32961810,98879571,296674303,890217834,2671430941,
%U A298255 8017066909,24060553805,72211714389,216729874503,650484059608
%N A298255 Number of nX4 0..1 arrays with every element equal to 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.
%C A298255 Column 4 of A298259.
%H A298255 R. H. Hardin, <a href="/A298255/b298255.txt">Table of n, a(n) for n = 1..210</a>
%F A298255 Empirical: a(n) = 6*a(n-1) -10*a(n-2) +4*a(n-3) -7*a(n-4) +9*a(n-5) +46*a(n-7) -92*a(n-8) +143*a(n-9) -88*a(n-10) -22*a(n-11) -115*a(n-12) +9*a(n-13) -231*a(n-14) -30*a(n-15) +726*a(n-16) -359*a(n-17) +521*a(n-18) -497*a(n-19) +2917*a(n-20) -2314*a(n-21) -435*a(n-22) +66*a(n-23) -272*a(n-24) -3177*a(n-25) -3089*a(n-26) +4256*a(n-27) +2549*a(n-28) -1942*a(n-29) -1138*a(n-30) +8259*a(n-31) -3970*a(n-32) +431*a(n-33) +2386*a(n-34) -3147*a(n-35) -1866*a(n-36) +196*a(n-37) -83*a(n-38) -673*a(n-39) +507*a(n-40) -882*a(n-41) +1079*a(n-42) +6*a(n-43) +719*a(n-44) -428*a(n-45) +106*a(n-46) -146*a(n-47) +149*a(n-48) -44*a(n-49) -20*a(n-50) -18*a(n-51) +2*a(n-52) +4*a(n-53) for n>54
%e A298255 Some solutions for n=7
%e A298255 ..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
%e A298255 ..0..1..1..0. .0..0..0..0. .1..0..0..1. .0..1..1..0. .0..1..1..0
%e A298255 ..1..0..0..1. .1..1..1..1. .1..1..1..0. .1..0..1..0. .1..0..1..0
%e A298255 ..0..1..1..0. .1..1..1..1. .0..0..0..1. .1..0..1..0. .1..0..1..0
%e A298255 ..0..1..0..0. .1..1..1..1. .0..1..1..0. .0..1..1..0. .1..0..1..0
%e A298255 ..0..1..0..1. .0..0..0..0. .1..0..1..0. .1..0..1..0. .0..1..1..0
%e A298255 ..0..0..1..1. .0..0..0..0. .1..1..0..0. .1..1..0..0. .0..0..0..0
%Y A298255 Cf. A298259.
%K A298255 nonn
%O A298255 1,2
%A A298255 _R. H. Hardin_, Jan 15 2018