cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298259 T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 2, 1, 2, 0, 0, 11, 4, 4, 11, 0, 0, 13, 3, 11, 3, 13, 0, 0, 34, 7, 23, 23, 7, 34, 0, 0, 65, 14, 72, 86, 72, 14, 65, 0, 0, 123, 35, 201, 238, 238, 201, 35, 123, 0, 0, 266, 89, 597, 604, 895, 604, 597, 89, 266, 0, 0, 499, 242, 1705, 2492, 3335, 3335, 2492
Offset: 1

Views

Author

R. H. Hardin, Jan 15 2018

Keywords

Comments

Table starts
.0...0..0....0....0.....0......0.......0........0.........0.........0
.0...1..3....2...11....13.....34......65......123.......266.......499
.0...3..1....4....3.....7.....14......35.......89.......242.......643
.0...2..4...11...23....72....201.....597.....1705......5141.....15305
.0..11..3...23...86...238....604....2492.....7722.....26880.....93816
.0..13..7...72..238...895...3335...13980....55889....230402....953813
.0..34.14..201..604..3335..13991...70095...331341...1644480...8037526
.0..65.35..597.2492.13980..70095..435534..2412035..14299708..83146969
.0.123.89.1705.7722.55889.331341.2412035.16014301.112395697.777907073

Examples

			Some solutions for n=7 k=4
..0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..1..1
..0..1..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1
..1..0..1..0. .0..1..1..0. .1..0..1..0. .0..1..1..0. .0..1..1..0
..1..1..0..0. .0..0..0..0. .1..0..0..0. .0..1..0..1. .0..1..0..1
..1..0..1..0. .1..1..1..1. .0..1..1..0. .0..0..0..1. .0..1..0..1
..0..1..1..0. .1..1..1..1. .1..0..0..1. .0..1..1..0. .1..0..0..1
..0..0..0..0. .1..1..1..1. .1..1..1..1. .1..1..0..0. .1..1..1..1
		

Crossrefs

Column 2 is A297870.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4)
k=3: [order 18] for n>19
k=4: [order 53] for n>54