cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298262 Number of integer partitions of n using relatively prime non-divisors of n.

This page as a plain text file.
%I A298262 #17 Aug 29 2018 02:52:06
%S A298262 0,0,0,0,1,0,3,1,3,2,13,1,23,7,10,8,65,5,104,11,53,53,252,8,244,124,
%T A298262 203,67,846,22,1237,157,636,569,1074,51,3659,1140,1827,221,7244,236,
%U A298262 10086,1162,1844,4169,19195,225,17657,2997
%N A298262 Number of integer partitions of n using relatively prime non-divisors of n.
%H A298262 Andrew Howroyd, <a href="/A298262/b298262.txt">Table of n, a(n) for n = 1..1000</a>
%F A298262 a(n) = Sum_{d|n} mu(n/d) * A098743(d).
%e A298262 The a(11) = 13 partitions: (65), (74), (83), (92), (443), (533), (542), (632), (722), (3332), (4322), (5222), (32222).
%e A298262 The a(14) = 7 partitions: (9 5), (11 3), (5 5 4), (6 5 3), (8 3 3), (4 4 3 3), (5 3 3 3).
%t A298262 Table[Length[Select[IntegerPartitions[n],And[GCD@@#===1,!Or@@(Divisible[n,#]&/@#)]&]],{n,50}]
%o A298262 (PARI) \\ here b(n) is A098743.
%o A298262 b(n)={polcoef(1/prod(k=1, n, if(n%k, 1 - x^k, 1) + O(x*x^n)), n)}
%o A298262 a(n)={sumdiv(n, d, moebius(d)*b(n/d))} \\ _Andrew Howroyd_, Aug 29 2018
%Y A298262 Cf. A000041, A000837, A002577, A002865, A018818, A018819, A049820, A098743, A100953, A200745, A275870, A281116.
%K A298262 nonn
%O A298262 1,7
%A A298262 _Gus Wiseman_, Jan 15 2018