A298267 a(n) is the maximum number of heptiamonds in a hexagon of order n.
0, 3, 7, 13, 21, 30, 42, 54, 69, 85, 103, 123, 144, 168, 192, 219, 247, 277, 309, 342, 378, 414, 453, 493, 535, 579, 624, 672, 720, 771, 823, 877, 933, 990, 1050, 1110, 1173, 1237, 1303, 1371, 1440, 1512, 1584, 1659, 1735, 1813, 1893, 1974, 2058, 2142
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Craig Knecht, H2 Hexagon with 3 heptiamonds packed in.
- Craig Knecht, H3 hexagon with 7 heptiamonds packed in.
- Craig Knecht, H4 H5 H6 H7 heptiamond packing.
- Craig Knecht, Peripheral Buildouts.
- Craig Knecht, Proof notes.
Programs
-
Mathematica
Array[Floor[(6 #^2)/7] &, 50] (* Michael De Vlieger, Jan 20 2018 *)
Formula
a(n) = floor((6*n^2)/7).
Conjectures from Colin Barker, Jan 20 2018: (Start)
G.f.: x*(1 + x)*(3 - 2*x + 4*x^2 - 2*x^3 + 3*x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = 2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9) for n>8.
(End)
Comments