cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298267 a(n) is the maximum number of heptiamonds in a hexagon of order n.

Original entry on oeis.org

0, 3, 7, 13, 21, 30, 42, 54, 69, 85, 103, 123, 144, 168, 192, 219, 247, 277, 309, 342, 378, 414, 453, 493, 535, 579, 624, 672, 720, 771, 823, 877, 933, 990, 1050, 1110, 1173, 1237, 1303, 1371, 1440, 1512, 1584, 1659, 1735, 1813, 1893, 1974, 2058, 2142
Offset: 0

Views

Author

Craig Knecht, Jan 15 2018

Keywords

Comments

There are 24 heptiamonds.
It would be nice if this idea could be generalized to state that the hexagon can contain the maximum number of polyiamonds of any given size.

Crossrefs

Cf. A033581 (The number of triangles in a hexagon), A291582 (hexiamond tiling).

Programs

Formula

a(n) = floor((6*n^2)/7).
Conjectures from Colin Barker, Jan 20 2018: (Start)
G.f.: x*(1 + x)*(3 - 2*x + 4*x^2 - 2*x^3 + 3*x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = 2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9) for n>8.
(End)