This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298268 #37 Feb 02 2018 03:25:57 %S A298268 1,2,3,4,5,9,7,6,15,25,11,21,13,49,35,8,17,27,19,55,77,121,23,33,65, %T A298268 169,39,91,29,85,31,10,143,289,119,45,37,361,221,95,41,133,43,187,115, %U A298268 529,47,51,161,125,323,247,53,57,209,203,437,841,59,145,61,961 %N A298268 a(1) = 1, and for any n > 1, if n is the k-th number with greatest prime factor p, then a(n) is the k-th number with least prime factor p. %C A298268 This sequence is a permutation of the natural numbers, with inverse A298882. %C A298268 For any prime p and k > 0: %C A298268 - if s_p(k) is the k-th p-smooth number and r_p(k) is the k-th p-rough number, %C A298268 - then a(p * s_p(k)) = p * r_p(k), %C A298268 - for example: a(11 * A051038(k)) = 11 * A008364(k). %H A298268 Rémy Sigrist, <a href="/A298268/b298268.txt">Table of n, a(n) for n = 1..10000</a> %H A298268 Rémy Sigrist, <a href="/A298268/a298268.png">Colored logarithmic scatterplot of the first 100000 terms</a> (with prime and semiprime values highlighted) %H A298268 Rémy Sigrist, <a href="/A298268/a298268_1.png">Colored logarithmic scatterplot of the first 100000 terms</a> (where the color is function of A006530(n)) %H A298268 Rémy Sigrist, <a href="/A298268/a298268_2.png">Colored logarithmic scatterplot of the first 100000 terms</a> (where the color is function of A176506(k) when a(n) is the k-th semiprime) %H A298268 Rémy Sigrist, <a href="/A298268/a298268.gp.txt">PARI program for A298268</a> %H A298268 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A298268 a(1) = 1. %F A298268 a(A125624(n, k)) = A083140(n, k) for any n > 0 and k > 0. %F A298268 a(n) = A083140(A061395(n), A078899(n)) for any n > 1. %F A298268 Empirically: %F A298268 - a(n) = n iff n belongs to A046022, %F A298268 - a(2^k) = 2 * k for any k > 0, %F A298268 - a(2 * p) = p^2 for any prime p, %F A298268 - a(3 * p) = p * A151800(p) for any odd prime p. %e A298268 The first terms, alongside A006530(n), are: %e A298268 n a(n) gpf(n) %e A298268 -- ---- ------ %e A298268 1 1 1 %e A298268 2 2 2 %e A298268 3 3 3 %e A298268 4 4 2 %e A298268 5 5 5 %e A298268 6 9 3 %e A298268 7 7 7 %e A298268 8 6 2 %e A298268 9 15 3 %e A298268 10 25 5 %e A298268 11 11 11 %e A298268 12 21 3 %e A298268 13 13 13 %e A298268 14 49 7 %e A298268 15 35 5 %e A298268 16 8 2 %e A298268 17 17 17 %e A298268 18 27 3 %e A298268 19 19 19 %e A298268 20 55 5 %o A298268 (PARI) See Links section. %Y A298268 Cf. A006530, A008364, A046022, A051038, A061395, A078899, A083140, A125624, A151800, A176506, A298268, A298882 (inverse). %K A298268 nonn %O A298268 1,2 %A A298268 _Rémy Sigrist_, Jan 27 2018