cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298272 The first of three consecutive hexagonal numbers the sum of which is equal to the sum of three consecutive primes.

This page as a plain text file.
%I A298272 #12 Jan 17 2018 11:45:45
%S A298272 6,6216,7626,9180,16836,19900,22366,29646,76636,89676,93096,114960,
%T A298272 116886,118828,322806,365940,397386,422740,437580,471906,499500,
%U A298272 574056,595686,626640,690900,743590,984906,1041846,1148370,1209790,1260078,1357128,1450956
%N A298272 The first of three consecutive hexagonal numbers the sum of which is equal to the sum of three consecutive primes.
%H A298272 Robert Israel, <a href="/A298272/b298272.txt">Table of n, a(n) for n = 1..10000</a> (first 100 terms from Colin Barker)
%e A298272 6 is in the sequence because 6+15+28 (consecutive hexagonal numbers) = 49 = 13+17+19 (consecutive primes).
%p A298272 N:= 100: # to get a(1)..a(100)
%p A298272 count:= 0:
%p A298272 mmax:= floor((sqrt(24*N-87)-9)/12):
%p A298272 for i from 1 while count < N do
%p A298272   mi:= 2*i;
%p A298272   m:= 6*mi^2+9*mi+7;
%p A298272   r:= ceil((m-8)/3);
%p A298272   p1:= prevprime(r+1);
%p A298272   p2:= nextprime(p1);
%p A298272   p3:= nextprime(p2);
%p A298272   while p1+p2+p3 > m do
%p A298272     p3:= p2; p2:= p1; p1:= prevprime(p1);
%p A298272   od:
%p A298272   if p1+p2+p3 = m then
%p A298272     count:= count+1;
%p A298272     A[count]:= mi*(2*mi-1);
%p A298272   fi
%p A298272 od:
%p A298272 seq(A[i], i=1..count); # _Robert Israel_, Jan 16 2018
%o A298272 (PARI) L=List(); forprime(p=2, 2000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t-87, &sq) && (sq-9)%12==0, u=(sq-9)\12; listput(L, u*(2*u-1)))); Vec(L)
%Y A298272 Cf. A000040, A000384, A054643, A298073, A298168, A298169, A298222, A298223, A298250, A298251, A298273.
%K A298272 nonn
%O A298272 1,1
%A A298272 _Colin Barker_, Jan 16 2018