A298273 The first of three consecutive primes the sum of which is equal to the sum of three consecutive hexagonal numbers.
13, 6427, 7873, 9439, 17203, 20287, 22783, 30133, 77417, 90523, 93949, 115903, 117841, 119797, 324403, 367649, 399163, 424573, 439441, 473839, 501493, 576193, 597859, 628861, 693223, 746023, 987697, 1044733, 1151399, 1212889, 1263247, 1360417, 1454351
Offset: 1
Keywords
Examples
13 is in the sequence because 13+17+19 (consecutive primes) = 49 = 6+15+28 (consecutive hexagonal numbers).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 100 terms from Colin Barker)
Crossrefs
Programs
-
Maple
N:= 100: # to get a(1)..a(100) count:= 0: mmax:= floor((sqrt(24*N-87)-9)/12): for i from 1 while count < N do mi:= 2*i; m:= 6*mi^2+9*mi+7; r:= ceil((m-8)/3); p1:= prevprime(r+1); p2:= nextprime(p1); p3:= nextprime(p2); while p1+p2+p3 > m do p3:= p2; p2:= p1; p1:= prevprime(p1); od: if p1+p2+p3 = m then count:= count+1; A[count]:= p1; fi od: seq(A[i],i=1..count); # Robert Israel, Jan 16 2018
-
PARI
L=List(); forprime(p=2, 2000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t-87, &sq) && (sq-9)%12==0, u=(sq-9)\12; listput(L, p))); Vec(L)