cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298273 The first of three consecutive primes the sum of which is equal to the sum of three consecutive hexagonal numbers.

Original entry on oeis.org

13, 6427, 7873, 9439, 17203, 20287, 22783, 30133, 77417, 90523, 93949, 115903, 117841, 119797, 324403, 367649, 399163, 424573, 439441, 473839, 501493, 576193, 597859, 628861, 693223, 746023, 987697, 1044733, 1151399, 1212889, 1263247, 1360417, 1454351
Offset: 1

Views

Author

Colin Barker, Jan 16 2018

Keywords

Examples

			13 is in the sequence because 13+17+19 (consecutive primes) = 49 = 6+15+28 (consecutive hexagonal numbers).
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(100)
    count:= 0:
    mmax:= floor((sqrt(24*N-87)-9)/12):
    for i from 1 while count < N do
      mi:= 2*i;
      m:= 6*mi^2+9*mi+7;
      r:= ceil((m-8)/3);
      p1:= prevprime(r+1);
      p2:= nextprime(p1);
      p3:= nextprime(p2);
      while p1+p2+p3 > m do
        p3:= p2; p2:= p1; p1:= prevprime(p1);
      od:
      if p1+p2+p3 = m then
        count:= count+1;
      A[count]:= p1;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Jan 16 2018
  • PARI
    L=List(); forprime(p=2, 2000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t-87, &sq) && (sq-9)%12==0, u=(sq-9)\12; listput(L, p))); Vec(L)