A298295 Solution a( ) of the complementary equation a(n) = a(0)*b(n) + a(1)*b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
1, 2, 13, 16, 19, 22, 25, 28, 31, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 83, 88, 92, 97, 101, 106, 109, 113, 118, 121, 124, 128, 133, 136, 140, 145, 148, 151, 155, 160, 163, 167, 172, 175, 178, 182, 187, 190, 194, 199, 202, 205, 209, 214, 217, 221, 226
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 13. Complement: (3,4,5,6,7,8,9,10,11,12,14,15,17,...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[0]*b[n] + a[1]*b[n - 1] Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 1010}]; Table[a[n], {n, 0, 150}] (* A298295 *) Table[b[n], {n, 0, 150}] (* A298296 *) (* Peter J. C. Moses, Jan 16 2018 *)
Comments