cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298296 Solution b( ) of the complementary equation a(n) = a(0)*b(n) + a(1)*b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.

This page as a plain text file.
%I A298296 #17 May 01 2018 02:59:33
%S A298296 3,4,5,6,7,8,9,10,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33,35,
%T A298296 36,37,39,40,41,42,44,45,46,48,49,50,51,53,54,55,57,58,59,60,62,63,64,
%U A298296 66,67,68,69,71,72,73,75,76,77,78,80,81,82,84,85,86,87
%N A298296 Solution b( ) of the complementary equation a(n) = a(0)*b(n) + a(1)*b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
%C A298296 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values; b(n)-b(n-1) is in {1,2} for all n >= 1.
%H A298296 Clark Kimberling, <a href="/A298296/b298296.txt">Table of n, a(n) for n = 0..1000</a>
%H A298296 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.
%e A298296 a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 13.
%e A298296 Complement: (3,4,5,6,7,8,9,10,11,12,14,15,17,...) = (b(n)).
%t A298296 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
%t A298296 a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
%t A298296 a[n_] := a[0]*b[n] + a[1]*b[n - 1]
%t A298296 Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 1010}];
%t A298296 Table[a[n], {n, 0, 150}]  (* A298295 *)
%t A298296 Table[b[n], {n, 0, 150}]  (* A298296 *)
%t A298296 (* _Peter J. C. Moses_, Jan 16 2018 *)
%Y A298296 Cf. A298295, A297830, A298000.
%K A298296 nonn,easy
%O A298296 0,1
%A A298296 _Clark Kimberling_, Feb 09 2018