This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298300 #29 Nov 24 2024 00:04:15 %S A298300 1,4,11,31,87,246,699,1996,5723,16468,47533,137567,399073,1160082, %T A298300 3378483,9855207,28790403,84218052,246651729,723165765,2122391109, %U A298300 6234634266,18330019029,53932825926,158802303429,467898288676,1379485436579,4069450219561 %N A298300 Analog of Motzkin numbers for Coxeter type D. %F A298300 a(n) = A002426(n-1) + A290380(n) (the latter being extended by A290380(2)=0). %F A298300 Conjectural algebraic equation: 3*t+2+(3*t^2+5*t-2)*f(t)+(3*t^3-t^2)*f(t)^2 = 0. %F A298300 From _Peter Luschny_, Jan 23 2018: (Start) %F A298300 a(n) = hypergeom([(1-n)/2,1-n/2],[1],4)+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4). %F A298300 a(n) = G(n-1,1-n,-1/2) + G(n-2,1-n,-1/2)*(n-2)/(n-1) where G(n,a,x) denotes the n-th Gegenbauer polynomial. (End) %F A298300 D-finite with recurrence +2*n*a(n) +(-7*n+6)*a(n-1) +9*(n-4)*a(n-3)=0. - _R. J. Mathar_, Jul 27 2022 %p A298300 A298300 := proc(n) %p A298300 hypergeom([(1-n)/2,1-n/2],[1],4)+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4); %p A298300 simplify(%) ; %p A298300 end proc: %p A298300 seq(A298300(n),n=2..40) ; # _R. J. Mathar_, Jul 27 2022 %t A298300 b[n_] := Hypergeometric2F1[(1 - n)/2, 1 - n/2, 1, 4]; %t A298300 c[n_] := (n-2) Hypergeometric2F1[1 - n/2, 3/2 - n/2, 2, 4]; %t A298300 Table[b[n] + c[n], {n, 2, 29}] (* _Peter Luschny_, Jan 23 2018 *) %o A298300 (Sage) %o A298300 def a(n): %o A298300 return (sum(ZZ(n - 2) / i * binomial(2 * i - 2, i - 1) * %o A298300 binomial(n - 2, 2 * i - 2) %o A298300 for i in range(1, floor(n / 2) + 1)) + %o A298300 sum(binomial(n - 1, k) * binomial(n - 1 - k, k) %o A298300 for k in range(floor((n - 1) / 2) + 1))) %Y A298300 Cf. A001006 (type A), A002426 (type B), A290380. %K A298300 nonn %O A298300 2,2 %A A298300 _F. Chapoton_, Jan 16 2018