cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298304 Number of rooted trees on n nodes with strictly thinning limbs.

This page as a plain text file.
%I A298304 #11 Jan 18 2018 18:32:41
%S A298304 1,1,1,2,3,4,7,12,19,31,51,85,144,245,417,712,1221,2091,3600,6216,
%T A298304 10763,18691,32546,56782,99271,173849,304877,535412,941385,1657069,
%U A298304 2919930,5150546,9093894,16071634,28428838,50331137,89181251,158145233,280650225,498410197
%N A298304 Number of rooted trees on n nodes with strictly thinning limbs.
%C A298304 An unlabeled rooted tree has strictly thinning limbs if its outdegrees are strictly decreasing from root to leaves.
%H A298304 Alois P. Heinz, <a href="/A298304/b298304.txt">Table of n, a(n) for n = 1..300</a>
%e A298304 The a(7) = 7 trees: (oo(o(o))), (o(o)(oo)), (ooo(oo)), ((o)(o)(o)), (oo(o)(o)), (oooo(o)), (oooooo).
%t A298304 stinctQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
%t A298304 strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],stinctQ]];
%t A298304 Table[Length[strut[n]],{n,20}]
%Y A298304 Cf. A000081, A001678, A004111, A032305, A124343, A290689, A295461, A298118, A298303, A298305.
%K A298304 nonn
%O A298304 1,4
%A A298304 _Gus Wiseman_, Jan 16 2018
%E A298304 a(26)-a(40) from _Alois P. Heinz_, Jan 17 2018