cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298313 The first of three consecutive primes the sum of which is equal to the sum of three consecutive octagonal numbers.

This page as a plain text file.
%I A298313 #14 Dec 03 2022 13:34:18
%S A298313 12541,75521,159617,182519,271181,373091,603901,609289,851197,983819,
%T A298313 1246757,2079997,3299081,3687421,4484737,4692497,5636171,7514477,
%U A298313 8273437,9299831,10408577,10430921,10746557,10769281,12739037,13012487,14213621,15440531,15713959
%N A298313 The first of three consecutive primes the sum of which is equal to the sum of three consecutive octagonal numbers.
%H A298313 Chai Wah Wu, <a href="/A298313/b298313.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..70 from Colin Barker)
%e A298313 12541 is in the sequence because 12541+12547+12553 (consecutive primes) = 37641 = 12160+12545+12936 (consecutive octagonal numbers).
%t A298313 Module[{nn=5000,oct3},oct3=Total/@Partition[PolygonalNumber[8,Range[nn]],3,1];Select[ Partition[Prime[Range[PrimePi[Ceiling[Max[oct3]/3]]]],3,1],MemberQ[ oct3,Total[ #]]&]][[All,1]] (* _Harvey P. Dale_, Dec 03 2022 *)
%o A298313 (PARI) L=List(); forprime(p=2, 20000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(36*t-180, &sq) && (sq-12)%18==0, u=(sq-12)\18; listput(L, p))); Vec(L)
%o A298313 (Python)
%o A298313 from __future__ import division
%o A298313 from sympy import prevprime, nextprime
%o A298313 A298313_list, n, m = [], 1, 30
%o A298313 while len(A298313_list) < 10000:
%o A298313     k = prevprime(m//3)
%o A298313     k2 = prevprime(k)
%o A298313     k3 = nextprime(k)
%o A298313     if k2 + k + k3 == m:
%o A298313         A298313_list.append(k2)
%o A298313     elif k + k3 + nextprime(k3) == m:
%o A298313         A298313_list.append(k)
%o A298313     n += 1
%o A298313     m += 18*n + 3 # _Chai Wah Wu_, Jan 22 2018
%Y A298313 Cf. A000040, A000567, A054643, A298073, A298168, A298169, A298222, A298223, A298250, A298251, A298272, A298273, A298301, A298302, A298312.
%K A298313 nonn
%O A298313 1,1
%A A298313 _Colin Barker_, Jan 17 2018