cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298338 a(n) = a(n-1) + a(n-2) + a([n/2]), where a(0) = 1, a(1) = 1, a(2) = 1.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 29, 51, 85, 145, 239, 401, 657, 1087, 1773, 2911, 4735, 7731, 12551, 20427, 33123, 53789, 87151, 141341, 228893, 370891, 600441, 972419, 1573947, 2548139, 4123859, 6674909, 10801679, 17481323, 28287737, 45776791, 74072259, 119861601
Offset: 0

Views

Author

Clark Kimberling, Feb 09 2018

Keywords

Comments

a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). Guide to related sequences:
****
sequence recurrence a(0),a(1),a(2)
A298338 a(n) = a(n-1)+a(n-2)+a([n/2]) 1,1,1
A298339 a(n) = a(n-1)+a(n-2)+a([n/2]) 1,2,3
A298400 a(n) = a(n-1)+a(n-2)-a([n/2]) 1,1,1
A298401 a(n) = a(n-1)+a(n-2)-a([n/2]) 1,2,3
A298340 a(n) = a(n-1)+a(n-2)+a([n/3]) 1,1,1
A298341 a(n) = a(n-1)+a(n-2)+a([n/3]) 1,2,3
A298342 a(n) = a(n-1)+a(n-2)+a([2*n/3]) 1,1,1
A298343 a(n) = a(n-1)+a(n-2)+a([2*n/3]) 1,2,3
A298344 a(n) = a(n-1)+a(n-2)+a([n/3])+a([2*n/3]) 1,1,1
A298345 a(n) = a(n-1)+a(n-2)+a([n/3])+a([2*n/3]) 1,2,3
A298346 a(n) = a(n-1)+a(n-2)+2*a([n/2]) 1,1,1
A298347 a(n) = a(n-1)+a(n-2)+2*a([n/2]) 1,2,3
A298348 a(n) = a(n-1)+a(n-2)+2*a([(n+1)/2]) 1,1,1
A298349 a(n) = a(n-1)+a(n-2)+2*a([(n+1)/2]) 1,2,3
A298350 a(n) = a(n-1)+a(n-2)+2*a(ceiling(n/2)) 1,1,1
A298351 a(n) = a(n-1)+a(n-2)+2*a(ceiling(n/2)) 1,2,3
A298352 a(n) = a(n-1)+a(n-2)+a([(n-1)/2]) 1,1,1
A298353 a(n) = a(n-1)+a(n-2)+a([(n-1)/2]) 1,2,3
A298354 a(n) = a(n-1)+a(n-2)+2*a([(n-1)/2]) 1,1,1
A298355 a(n) = a(n-1)+a(n-2)+2*a([(n-1)/2]) 1,2,3
A298356 a(n) = a(n-1)+a(n-2)+a([n/2])+a([n/3])+...+a([n/n]) 1,1,1
A298357 a(n) = a(n-1)+a(n-2)+a([n/2])+a([n/3])+...+a([n/n]) 1,2,3
A298369 a(n) = a(n-1)+a(n-2)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,1,1
A298370 a(n) = a(n-1)+a(n-2)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,2,3
A298402 a(n) = 2*a(n-1)-a(n-3)+a([n/2]) 1,1,1
A298403 a(n) = 2*a(n-1)-a(n-3)+a([n/2]) 1,2,3
A298404 a(n) = 2*a(n-1)-a(n-3)+a(ceiling(n/2)) 1,1,1
A298405 a(n) = 2*a(n-1)-a(n-3)+a(ceiling(n/2)) 1,2,3
A298406 a(n) = 2*a(n-1)-a(n-3)+a([n/2])+a([n/3])+...+a([n/n]) 1,1,1
A298407 a(n) = 2*a(n-1)-a(n-3)+a([n/2])+a([n/3])+...+a([n/n]) 1,2,3
A298408 a(n) = 2*a(n-1)-a(n-3)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,1,1
A298409 a(n) = 2*a(n-1)-a(n-3)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,2,3

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[Floor[n/2]];
    Table[a[n], {n, 0, 30}]  (* A298338 *)