This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298356 #8 Mar 31 2021 17:25:01 %S A298356 1,1,1,4,8,16,32,57,103,178,308,514,874,1441,2394,3926,6462,10531, %T A298356 17231,28001,45614,74026,120258,194903,316210,512171,830007,1343883, %U A298356 2176578,3523150,5704107,9231637,14942711,24181525,39135483,63328289,102482212,165828942 %N A298356 a(n) = a(n-1) + a(n-2) + a([n/2]) + a([n/3]) + ... + a([n/n]), where a(0) = 1, a(1) = 1, a(2) = 1. %C A298356 a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). See A298338 for a guide to related sequences. %H A298356 Clark Kimberling, <a href="/A298356/b298356.txt">Table of n, a(n) for n = 0..1000</a> %t A298356 a[0] = 1; a[1] = 1; a[2] = 1; %t A298356 a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[a[Floor[n/k]], {k, 2, n}]; %t A298356 Table[a[n], {n, 0, 30}] (* A298356 *) %o A298356 (Python) %o A298356 from functools import lru_cache %o A298356 @lru_cache(maxsize=None) %o A298356 def A298356(n): %o A298356 if n <= 2: %o A298356 return 1 %o A298356 c, j = A298356(n-1)+A298356(n-2), 2 %o A298356 k1 = n//j %o A298356 while k1 > 1: %o A298356 j2 = n//k1 + 1 %o A298356 c += (j2-j)*A298356(k1) %o A298356 j, k1 = j2, n//j2 %o A298356 return c+n-j+1 # _Chai Wah Wu_, Mar 31 2021 %Y A298356 Cf. A001622, A000045, A298338. %K A298356 nonn,easy %O A298356 0,4 %A A298356 _Clark Kimberling_, Feb 10 2018