This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298357 #8 Mar 31 2021 17:24:39 %S A298357 1,2,3,9,19,37,74,131,238,410,710,1184,2014,3320,5516,9044,14888, %T A298357 24262,39698,64510,105089,170545,277057,449027,728502,1179967,1912216, %U A298357 3096110,5014519,8116824,13141430,21268343,34425826,55710704,90162442,145899135,236104060 %N A298357 a(n) = a(n-1) + a(n-2) + a([n/2]) + a([n/3]) + ... + a([n/n]), where a(0) = 1, a(1) = 2, a(2) = 3. %C A298357 a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). See A298338 for a guide to related sequences. %H A298357 Clark Kimberling, <a href="/A298357/b298357.txt">Table of n, a(n) for n = 0..1000</a> %t A298357 a[0] = 1; a[1] = 2; a[2] = 3; %t A298357 a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[a[Floor[n/k]], {k, 2, n}]; %t A298357 Table[a[n], {n, 0, 30}] (* A298357 *) %o A298357 (Python) %o A298357 from functools import lru_cache %o A298357 @lru_cache(maxsize=None) %o A298357 def A298357(n): %o A298357 if n <= 2: %o A298357 return n+1 %o A298357 c, j = A298357(n-1)+A298357(n-2), 2 %o A298357 k1 = n//j %o A298357 while k1 > 1: %o A298357 j2 = n//k1 + 1 %o A298357 c += (j2-j)*A298357(k1) %o A298357 j, k1 = j2, n//j2 %o A298357 return c+2*(n-j+1) # _Chai Wah Wu_, Mar 31 2021 %Y A298357 Cf. A001622, A000045, A298338. %K A298357 nonn,easy %O A298357 0,2 %A A298357 _Clark Kimberling_, Feb 10 2018