This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298359 #14 Jan 22 2018 03:05:27 %S A298359 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27, %T A298359 30,31,32,33,34,35,36,40,41,42,43,44,45,50,51,52,53,54,60,61,62,63,70, %U A298359 71,72,80,81,90,100,19,37,46,55,64,73,82,91,110,28,56,74 %N A298359 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, Sum_{k = 1..n} 10^(k-1) * a(k) can be computed without carry in decimal base. %C A298359 More informally: write the terms in decimal under each other, right-justified; the digits on each diagonal in downwards direction sum at most to 9. %C A298359 The corresponding sequence for base 2 is A094958. %C A298359 See also A298425 for a similar sequence. %H A298359 Rémy Sigrist, <a href="/A298359/b298359.txt">Table of n, a(n) for n = 1..10000</a> %H A298359 Rémy Sigrist, <a href="/A298359/a298359.gp.txt">PARI program for A298359</a> %e A298359 The first terms, alongside 10^(n-1) * a(n), are: %e A298359 n a(n) 10^(n-1) * a(n) %e A298359 -- ---- ------------------- %e A298359 1 1 1 %e A298359 2 2 20 %e A298359 3 3 300 %e A298359 4 4 4000 %e A298359 5 5 50000 %e A298359 6 6 600000 %e A298359 7 7 7000000 %e A298359 8 8 80000000 %e A298359 9 9 900000000 %e A298359 10 10 10000000000 %e A298359 11 11 110000000000 %e A298359 12 12 1200000000000 %e A298359 13 13 13000000000000 %e A298359 14 14 140000000000000 %e A298359 15 15 1500000000000000 %e A298359 16 16 16000000000000000 %e A298359 17 17 170000000000000000 %e A298359 18 18 1800000000000000000 %e A298359 19 20 20000000000000000000 %e A298359 20 21 210000000000000000000 %e A298359 The terms on the third column can be summed without carry in decimal base. %o A298359 (PARI) See Links section. %Y A298359 Cf. A094958, A298425. %K A298359 nonn,base %O A298359 1,2 %A A298359 _Rémy Sigrist_, Jan 17 2018