A298425 Lexicographically earliest sequence of distinct positive terms such that, for any n> 0, Sum_{k = 1..n} 10^(n-k) * a(k) can be computed without carry in decimal base.
1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1000, 20, 21, 22, 23, 24, 25, 26, 27, 28, 1001, 29, 101, 30, 31, 32, 33, 34, 35, 36, 37, 1002, 38, 102, 39, 103, 40, 41, 42, 43, 44, 45, 46, 1003, 47, 104, 48, 105, 49, 1004, 50, 51, 52
Offset: 1
Examples
The first 25 terms, alongside 10^(25-n) * a(n), are: n a(n) 10^(25-n) * a(n) -- ---- ------------------------- 1 1 1000000000000000000000000 2 2 200000000000000000000000 3 3 30000000000000000000000 4 4 4000000000000000000000 5 5 500000000000000000000 6 6 60000000000000000000 7 7 7000000000000000000 8 8 800000000000000000 9 9 90000000000000000 10 100 100000000000000000 11 10 1000000000000000 12 11 110000000000000 13 12 12000000000000 14 13 1300000000000 15 14 140000000000 16 15 15000000000 17 16 1600000000 18 17 170000000 19 18 18000000 20 19 1900000 21 1000 10000000 22 20 20000 23 21 2100 24 22 220 25 23 23 The terms on the third column can be summed without carry in decimal base.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..1380
- Rémy Sigrist, PARI program for A298425
- Rémy Sigrist, Logarithmic scatterplot of a(n) for n = 1..5000 (with powers of 10 highlighted)
- Rémy Sigrist, logarithmic scatterplot of a(n) for n = 1..5000 and a(n) < 10^20
Crossrefs
Cf. A298359.
Programs
-
PARI
See Links section.
Comments