This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298362 #43 Jun 07 2024 10:57:27 %S A298362 1,1,4,1,11,64,1,26,282,2072,1,57,1071,12279,106738,1,120,3729,63858, %T A298362 781458,7743880,1,247,12310,305464,5111986,66679398,735490024,1,502, %U A298362 39296,1382648,30980370,521083252,7216122740,87138728592,1,1013,122773,6029325,178047831,3802292847,65106398091 %N A298362 Number of tight m X n pavings as defined in Knuth's A285357 written as triangle T(m,n), m >= 1, 1 <= n <= m. %C A298362 See A285357. %C A298362 For m < n, one has A285357(m,n) = T(n,m). Thus, row and column n of A285357 start with the n terms of row n, then go on downwards in column n: e.g., the full row/column 2 is (1, 4, 11, 26, ...) = A000295 (without initial 0); row/column 3 is (1, 11, 64, 282, 1071, ...) = A285361. - _M. F. Hasler_, Jan 20 2018 %H A298362 Roberto Tauraso, <a href="http://www.mat.uniroma2.it/~tauraso/AMM/AMM12005.pdf">Problem 12005, Proposed solution</a>. %H A298362 Konstantin Vladimirov, <a href="https://github.com/tilir/generators">Generating things</a>, Program naivepavings.cc to enumerate all tight pavings. %e A298362 The triangle starts: %e A298362 ================================================================================ %e A298362 m \ n| 1 2 3 4 5 6 7 8 9 %e A298362 -----|-------------------------------------------------------------------------- %e A298362 . 1 | 1 %e A298362 . 2 | 1 4 %e A298362 . 3 | 1 11 64 %e A298362 . 4 | 1 26 282 2072 %e A298362 . 5 | 1 57 1071 12279 106738 %e A298362 . 6 | 1 120 3729 63858 781458 7743880 %e A298362 . 7 | 1 247 12310 305464 5111986 66679398 735490024 %e A298362 . 8 | 1 502 39296 1382648 30980370 521083252 7216122740 87138728592 %e A298362 . 9 | 1 1013 122773 6029325 178047831 3802292847 65106398091 ? ? %e A298362 . 10 | 1 2036 378279 25628762 985621119 26409556208 ... %o A298362 (C++) // See Vladimirov link. %Y A298362 Cf. A000295, A285357, A285361, A336732, A336734. %K A298362 nonn,tabl %O A298362 1,3 %A A298362 _Hugo Pfoertner_, Jan 17 2018 %E A298362 Added a number of values in the example table, _Denis Roegel_, Feb 24 2018 %E A298362 Extended using data from _Denis Roegel_ by _Hugo Pfoertner_, Mar 12 2018