This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298368 #29 Feb 16 2025 08:33:53 %S A298368 0,0,0,0,0,1,0,0,2,4,0,0,4,8,16,0,0,6,12,24,36,0,0,9,18,36,54,81,0,0, %T A298368 12,24,48,72,108,144,0,0,16,32,64,96,144,192,256,0,0,20,40,80,120,180, %U A298368 240,320,400,0,0,25,50,100,150,225,300,400,500,625 %N A298368 Triangle read by rows: T(n, k) = floor((n-1)/2)*floor(n/2)*floor((k-1)/2)*floor(k/2). %C A298368 T(n, k) is conjectured by Zarankiewicz's conjecture to be the crossing number of the complete bipartite graph K_{k,n}. %H A298368 Robert Israel, <a href="/A298368/b298368.txt">Table of n, a(n) for n = 1..10011</a> (rows 1 to 141, flattened) %H A298368 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCrossingNumber.html">Graph Crossing Number</a>. %H A298368 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ZarankiewiczsConjecture.html">Zarankiewicz's Conjecture</a>. %F A298368 T(n,n) = A030179(n). %F A298368 From _Robert Israel_, Jan 17 2018: (Start) %F A298368 T(n,k) = A002620(n-1)*A002620(k-1). %F A298368 G.f. as triangle: x^3*y^3*(1+2*x*y+6*x^2*y^2-4*x^3*y-8*x^3*y^2+2*x^4*y+2*x^3*y^3-4*x^4*y^2-2*x^4*y^3+4*x^5*y^2+ x^4*y^4-4*x^5*y^3-2*x^5*y^4+4*x^6*y^3+2*x^7*y^4)/ %F A298368 ((1-x*y)^5*(1+x*y)^3*(1-x)^3*(1+x)). (End) %e A298368 First rows are given by: %e A298368 0; %e A298368 0, 0; %e A298368 0, 0, 1; %e A298368 0, 0, 2, 4; %e A298368 0, 0, 4, 8, 16; %e A298368 0, 0, 6, 12, 24, 36; %e A298368 0, 0, 9, 18, 36, 54, 81; %e A298368 0, 0, 12, 24, 48, 72, 108, 144; %e A298368 0, 0, 16, 32, 64, 96, 144, 192, 256; %e A298368 0, 0, 20, 40, 80, 120, 180, 240, 320, 400; %p A298368 seq(seq(floor((k-1)/2)*floor(k/2)*floor((n-1)/2)*floor(n/2),k=1..n),n=1..12); # _Robert Israel_, Jan 17 2018 %t A298368 Table[Floor[(m - 1)/2] Floor[m/2] Floor[(n - 1)/2] Floor[n/2], {n, 11}, {m, n}] // Flatten %t A298368 Table[Times @@ Floor[{m, m - 1, n, n - 1}/2], {n, 11}, {m, n}] // Flatten %Y A298368 Cf. A030179, A191928. %K A298368 nonn,easy,tabl,nice %O A298368 1,9 %A A298368 _Eric W. Weisstein_, Jan 17 2018