A298370 a(n) = a(n-1) + a(n-2) + 2 a(floor(n/2)) + 3 a(floor(n/3)) + ... + n a(floor(n/n)), where a(0) = 1, a(1) = 2, a(2) = 3.
1, 2, 3, 15, 38, 83, 190, 356, 695, 1254, 2267, 3861, 6829, 11417, 19340, 32076, 53545, 87784, 145048, 236589, 387765, 631106, 1028866, 1670013, 2716595, 4404599, 7148426, 11582096, 18776334, 30404300, 49256015, 79735758, 129111774, 208972513, 338277831
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 2; a[2] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[k*a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 30}] (* A298370 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A298370(n): if n <= 2: return n+1 c, j = A298370(n-1)+A298370(n-2), 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2*(j2-1)-j*(j-1))*A298370(k1)//2 j, k1 = j2, n//j2 return c+2*(n*(n+1)-j*(j-1))//2 # Chai Wah Wu, Mar 31 2021
Comments