A298406 a(n) = 2*a(n-1) - a(n-3) + a(floor(n/2)) + a(floor(n/3)) + ... + a(floor(n/n)), where a(0) = 1, a(1) = 1, a(2) = 1.
1, 1, 1, 3, 8, 19, 42, 84, 163, 301, 547, 961, 1682, 2879, 4902, 8241, 13807, 22917, 37962, 62487, 102690, 168096, 274798, 448000, 729829, 1186797, 1928729, 3130905, 5080360, 8237339, 13352743, 21634097, 35045477, 56753250, 91896553, 148771833, 240830555
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = 2*a[n - 1] - a[n - 3] + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 90}] (* A298406 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A298406(n): if n <= 2: return 1 c, j = 2*A298406(n-1)-A298406(n-3), 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A298406(k1) j, k1 = j2, n//j2 return c+n-j+1 # Chai Wah Wu, Mar 31 2021
Comments