A298407 a(n) = 2*a(n-1) - a(n-3) + a(floor(n/2)) + a(floor(n/3)) + ... + a(floor(n/n)), where a(0) = 1, a(1) = 2, a(2) = 3.
1, 2, 3, 9, 23, 52, 113, 223, 431, 794, 1442, 2532, 4433, 7589, 12924, 21730, 36411, 60440, 100125, 164816, 270863, 443390, 724846, 1181713, 1925113, 3130488, 5087530, 8258585, 13400782, 21728136, 35221342, 57065559, 92441545, 149701409, 242400952, 392424193
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 2; a[2] = 3; a[n_] := a[n] = 2*a[n - 1] - a[n - 3] + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 90}] (* A298407 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A298407(n): if n <= 2: return n+1 c, j = 2*A298407(n-1)-A298407(n-3), 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A298407(k1) j, k1 = j2, n//j2 return c+2*(n-j+1) # Chai Wah Wu, Mar 31 2021
Comments