cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298407 a(n) = 2*a(n-1) - a(n-3) + a(floor(n/2)) + a(floor(n/3)) + ... + a(floor(n/n)), where a(0) = 1, a(1) = 2, a(2) = 3.

Original entry on oeis.org

1, 2, 3, 9, 23, 52, 113, 223, 431, 794, 1442, 2532, 4433, 7589, 12924, 21730, 36411, 60440, 100125, 164816, 270863, 443390, 724846, 1181713, 1925113, 3130488, 5087530, 8258585, 13400782, 21728136, 35221342, 57065559, 92441545, 149701409, 242400952, 392424193
Offset: 0

Views

Author

Clark Kimberling, Feb 10 2018

Keywords

Comments

a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). See A298338 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 3;
    a[n_] := a[n] = 2*a[n - 1] - a[n - 3] + Sum[a[Floor[n/k]], {k, 2, n}];
    Table[a[n], {n, 0, 90}]  (* A298407  *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A298407(n):
        if n <= 2:
            return n+1
        c, j = 2*A298407(n-1)-A298407(n-3), 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A298407(k1)
            j, k1 = j2, n//j2
        return c+2*(n-j+1) # Chai Wah Wu, Mar 31 2021