This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298408 #10 Mar 31 2021 19:10:02 %S A298408 1,1,1,6,20,53,130,277,574,1115,2126,3862,7021,12341,21553,36957, %T A298408 63111,106224,178407,296638,492231,811731,1335994,2188950,3583027, %U A298408 5847108,9532980,15512342,25226123,40967842,66506422,107869832,174908573,283452771,459264017 %N A298408 a(n) = 2*a(n-1) - a(n-3) + 2*a(floor(n/2)) + 3*a(floor(n/3)) + ... + n*a(floor(n/n)), where a(0) = 1, a(1) = 1, a(2) = 1. %C A298408 a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). See A298338 for a guide to related sequences. %H A298408 Clark Kimberling, <a href="/A298408/b298408.txt">Table of n, a(n) for n = 0..1000</a> %t A298408 a[0] = 1; a[1] = 1; a[2] = 1; %t A298408 a[n_] := a[n] = 2*a[n - 1] - a[n - 3] + Sum[k*a[Floor[n/k]], {k, 2, n}]; %t A298408 Table[a[n], {n, 0, 90}] (* A298408 *) %o A298408 (Python) %o A298408 from functools import lru_cache %o A298408 @lru_cache(maxsize=None) %o A298408 def A298408(n): %o A298408 if n <= 2: %o A298408 return 1 %o A298408 c, j = 2*A298408(n-1)-A298408(n-3), 2 %o A298408 k1 = n//j %o A298408 while k1 > 1: %o A298408 j2 = n//k1 + 1 %o A298408 c += (j2*(j2-1)-j*(j-1))*A298408(k1)//2 %o A298408 j, k1 = j2, n//j2 %o A298408 return c+(n*(n+1)-j*(j-1))//2 # _Chai Wah Wu_, Mar 31 2021 %Y A298408 Cf. A001622, A000045, A298338, A298409. %K A298408 nonn,easy %O A298408 0,4 %A A298408 _Clark Kimberling_, Feb 10 2018