This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298409 #10 Mar 31 2021 19:18:26 %S A298409 1,2,3,15,48,123,300,635,1316,2555,4873,8850,16096,28296,49424,84749, %T A298409 144733,243607,409156,680308,1128889,1861633,3063978,5020133,8217296, %U A298409 13409702,21862824,35575784,57853195,93954953,152524643,247386674,401132014,650065133 %N A298409 a(n) = 2*a(n-1) - a(n-3) + 2*a(floor(n/2)) + 3*a(floor(n/3)) + ... + n*a(floor(n/n)), where a(0) = 1, a(1) = 2, a(2) = 3. %C A298409 a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). See A298338 for a guide to related sequences. %H A298409 Clark Kimberling, <a href="/A298409/b298409.txt">Table of n, a(n) for n = 0..1000</a> %t A298409 a[0] = 1; a[1] = 2; a[2] = 3; %t A298409 a[n_] := a[n] = 2*a[n - 1] - a[n - 3] + Sum[k*a[Floor[n/k]], {k, 2, n}]; %t A298409 Table[a[n], {n, 0, 90}] (* A298409 *) %o A298409 (Python) %o A298409 from functools import lru_cache %o A298409 @lru_cache(maxsize=None) %o A298409 def A298409(n): %o A298409 if n <= 2: %o A298409 return n+1 %o A298409 c, j = 2*A298409(n-1)-A298409(n-3), 2 %o A298409 k1 = n//j %o A298409 while k1 > 1: %o A298409 j2 = n//k1 + 1 %o A298409 c += (j2*(j2-1)-j*(j-1))*A298409(k1)//2 %o A298409 j, k1 = j2, n//j2 %o A298409 return c+2*(n*(n+1)-j*(j-1))//2 # _Chai Wah Wu_, Mar 31 2021 %Y A298409 Cf. A001622, A000045, A298338, A298408. %K A298409 nonn,easy %O A298409 0,2 %A A298409 _Clark Kimberling_, Feb 10 2018