This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298418 #12 Jul 27 2024 09:33:04 %S A298418 3,10,13,18,23,31,37,40,43,50,53,63,68,70,73,82,85,89,91,98,111,115, %T A298418 118,120,129,139,141,144,150,153,155,160,164,168,183,187,189,194,198, %U A298418 201,203,217,219,232,235,240,247,253,255,258,261,264,268,270,275,284 %N A298418 Solution (c(n)) of the system of 3 complementary equations in Comments. %C A298418 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298418 a(n) = least new; %C A298418 b(n) = least new > = a(n) + n + 1; %C A298418 c(n) = a(n) + b(n); %C A298418 where "least new k" means the least positive integer not yet placed. %C A298418 *** %C A298418 The sequences a,b,c partition the positive integers. %C A298418 *** %C A298418 Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then %C A298418 x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67)) %C A298418 x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1. %C A298418 (The same limits occur in A298868 and A297469.) %H A298418 Clark Kimberling, <a href="/A298418/b298418.txt">Table of n, a(n) for n = 0..1000</a> %e A298418 n: 0 1 2 3 4 5 6 7 8 9 10 %e A298418 a: 1 4 5 7 9 12 15 16 17 20 21 %e A298418 b: 2 6 8 11 14 19 22 24 26 30 32 %e A298418 c: 3 10 13 18 23 31 37 40 43 50 53 %t A298418 z=200; %t A298418 mex[list_,start_]:=(NestWhile[#+1&,start,MemberQ[list,#]&]); %t A298418 a={1};b={2};c={3};n=0; %t A298418 Do[{n++; %t A298418 AppendTo[a,mex[Flatten[{a,b,c}],If[Length[a]==0,1,Last[a]]]], %t A298418 AppendTo[b,mex[Flatten[{a,b,c}],Last[a]+n+1]], %t A298418 AppendTo[c,Last[a]+Last[b]]},{z}]; %t A298418 Take[a,100] (* A297838 *) %t A298418 Take[b,100] (* A298170 *) %t A298418 Take[c,100] (* A298418 *) %t A298418 (* _Peter J. C. Moses_, Apr 23 2018 *) %Y A298418 Cf. A299634, A298868, A297469, A297838, A298170. %K A298418 nonn,easy %O A298418 0,1 %A A298418 _Clark Kimberling_, May 01 2018