A298426 Regular triangle where T(n,k) is number of k-ary rooted trees with n nodes.
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 11, 4, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 23, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 2 1 0 0 1 0 1 0 0 0 0 0 1 0 1 3 0 1 0 0 0 1 0 1 0 2 0 0 0 0 0 1 0 1 6 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 11 4 2 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 23 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 8 0 2 0 0 0 0 0 0 0 0 0 1
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Crossrefs
Programs
-
Mathematica
nn=16; arut[n_,k_]:=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[arut[#,k]&/@c]]]/@Select[IntegerPartitions[n-1],Length[#]===k&]] Table[arut[n,k]//Length,{n,nn},{k,0,n-1}]
Comments