cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298426 Regular triangle where T(n,k) is number of k-ary rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 11, 4, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 23, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums are A298422.

Examples

			Triangle begins:
1
0  1
0  1  1
0  1  0  1
0  1  1  0  1
0  1  0  0  0  1
0  1  2  1  0  0  1
0  1  0  0  0  0  0  1
0  1  3  0  1  0  0  0  1
0  1  0  2  0  0  0  0  0  1
0  1  6  0  0  1  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  1
0  1  11 4  2  0  1  0  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  0  0  1
0  1  23 0  0  0  0  1  0  0  0  0  0  0  1
0  1  0  8  0  2  0  0  0  0  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    nn=16;
    arut[n_,k_]:=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[arut[#,k]&/@c]]]/@Select[IntegerPartitions[n-1],Length[#]===k&]]
    Table[arut[n,k]//Length,{n,nn},{k,0,n-1}]