This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298427 #11 Jan 28 2018 13:44:51 %S A298427 38227,113476,155827,269444,336931,411747 %N A298427 Numbers n such that there are precisely 9 groups of orders n and n + 1. %C A298427 Equivalently, lower member of consecutive terms of A249552. %H A298427 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://dx.doi.org/10.1142/S0218196702001115">A Millennium Project: Constructing Small Groups</a>, Internat. J. Algebra and Computation, 12 (2002), 623-644. %H A298427 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubcay/">Numbers of Small Groups</a> %H A298427 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %F A298427 Sequence is { n | [A000001(n), A000001(n+1)] = [9, 9] }. %e A298427 For n = 38227, A000001(38227) = A000001(38228) = 9. %e A298427 For n = 113476, A000001(113476) = A000001(113477) = 9. %e A298427 For n = 155827, A000001(155827) = A000001(155828) = 9. %p A298427 with(GroupTheory): for n from 1 to 10^6 do if [NumGroups(n), NumGroups(n+1)] = [9, 9] then print(n); fi; od; %Y A298427 Cf. A000001. Subsequence of A249552 (Numbers n having precisely 9 groups of order n). Numbers n having precisely k groups of orders n and n+1: A295230 (k=2), A295990 (k=4), A295991 (k=5), A295992 (k=6), A295993 (k=8), this sequence (k=9), A298428 (k=10), A295994 (k=11), A295995 (k=15). %K A298427 nonn,more %O A298427 1,1 %A A298427 _Muniru A Asiru_, Jan 19 2018