This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298428 #6 Jan 28 2018 13:45:03 %S A298428 13914,15974,77234,99126,107205,122675,128894,187473,188265,204134 %N A298428 Numbers n such that there are precisely 10 groups of orders n and n + 1. %C A298428 Equivalently, lower member of consecutive terms of A249553. %H A298428 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://dx.doi.org/10.1142/S0218196702001115">A Millennium Project: Constructing Small Groups</a>, Internat. J. Algebra and Computation, 12 (2002), 623-644. %H A298428 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubcay/">Numbers of Small Groups</a> %H A298428 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %F A298428 Sequence is { n | A000001(n) = 10, A000001(n+1) = 10 }. %e A298428 For n = 13914, A000001(13914) = A000001(13915) = 10. %e A298428 For n = 15974, A000001(15974) = A000001(15975) = 10. %e A298428 For n = 77234, A000001(77234) = A000001(77235) = 10. %p A298428 with(GroupTheory): for n from 1 to 10^5 do if [NumGroups(n), NumGroups(n+1)] = [10, 10] then print(n); fi; od; %Y A298428 Cf. A000001. Subsequence of A249553 (Numbers n having precisely 10 groups of order n). Numbers n having precisely k groups of orders n and n+1: A295230 (k=2), A295990 (k=4), A295991 (k=5), A295992 (k=6), A295993 (k=8), A298427 (k=9), this sequence (k=10), A295994 (k=11), A295995 (k=15). %K A298428 nonn,more %O A298428 1,1 %A A298428 _Muniru A Asiru_, Jan 19 2018