This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298429 #7 Jan 28 2018 13:45:16 %S A298429 30135,76312,130890,173445,356610 %N A298429 Numbers n such that there are precisely 12 groups of orders n and n + 1. %C A298429 Equivalently, lower member of consecutive terms of A249555. %H A298429 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://dx.doi.org/10.1142/S0218196702001115">A Millennium Project: Constructing Small Groups</a>, Internat. J. Algebra and Computation, 12 (2002), 623-644. %H A298429 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubcay/">Numbers of Small Groups</a> %H A298429 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %F A298429 Sequence is { n | A000001(n) = 12, A000001(n+1) = 12 }. %e A298429 For n = 30135, A000001(30135) = A000001(30136) = 12. %e A298429 For n = 76312, A000001(76312) = A000001(76313) = 12. %e A298429 For n = 130890, A000001(130890) = A000001(130891) = 12. %p A298429 withGroupTheory): for n from 1 to 10^6 do if [NumGroups(n), NumGroups(n+1)] = [12, 12] then print(n); fi; od; %Y A298429 Cf. A000001. Subsequence of A249555 (Numbers n having precisely 12 groups of order n). Numbers n having precisely k groups of orders n and n+1: A295230 (k=2), A295990 (k=4), A295991 (k=5), A295992 (k=6), A295993 (k=8), A298427 (k=9), A298428 (k=10), A295994 (k=11), this sequence (k=12), A298430 (k=13), A298431 (k=14), A295995 (k=15). %K A298429 nonn,more %O A298429 1,1 %A A298429 _Muniru A Asiru_, Jan 19 2018