cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298431 Numbers n such that there are precisely 14 groups of orders n and n + 1.

This page as a plain text file.
%I A298431 #6 Jan 28 2018 13:45:33
%S A298431 4328,22311,29864,57896,75368,99368,120807,130664,131943,152295,
%T A298431 157287,164072,180327,184232,212456,236583,268712,276392,331112,
%U A298431 338792,381927
%N A298431 Numbers n such that there are precisely 14 groups of orders n and n + 1.
%C A298431 Equivalently, lower member of consecutive terms of A294155.
%H A298431 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://dx.doi.org/10.1142/S0218196702001115">A Millennium Project: Constructing Small Groups</a>, Internat. J. Algebra and Computation, 12 (2002), 623-644.
%H A298431 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubcay/">Numbers of Small Groups</a>
%H A298431 <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%F A298431 Sequence is { n | A000001(n) = 14, A000001(n+1) = 14 }.
%e A298431 For n = 4328, A000001(4328) = A000001(4329) = 14.
%e A298431 For n = 22311, A000001(22311) = A000001(22312) = 14.
%e A298431 For n = 29864, A000001(29864) = A000001(29865) = 14.
%p A298431 with(GroupTheory): for n from 1 to 10^5 do if [NumGroups(n), NumGroups(n+1)] = [14, 14] then print(n); fi; od;
%Y A298431 Cf. A000001. Subsequence of A294155 (Numbers n having precisely 14 groups of order n). Numbers n having precisely k groups of orders n and n+1: A295230 (k=2), A295990 (k=4), A295991 (k=5), A295992 (k=6), A295993 (k=8), A298427 (k=9), A298428 (k=10), A295994 (k=11), A298429 (k=12), A298430 (k=13), this sequence (k=14), A295995 (k=15).
%K A298431 nonn,more
%O A298431 1,1
%A A298431 _Muniru A Asiru_, Jan 19 2018