This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298437 #6 Jan 28 2018 13:45:44 %S A298437 83132,86049,173529,492830,704241,889406 %N A298437 Numbers n such that there are precisely 16 groups of orders n and n + 1. %C A298437 Equivalently, lower member of consecutive terms of A295161. %H A298437 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://dx.doi.org/10.1142/S0218196702001115">A Millennium Project: Constructing Small Groups</a>, Internat. J. Algebra and Computation, 12 (2002), 623-644. %H A298437 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubcay/">Numbers of Small Groups</a> %H A298437 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %F A298437 Sequence is { n | A000001(n) = 16, A000001(n+1) = 16 }. %e A298437 For n = 83132, A000001(83132) = A000001(83133) = 16. %e A298437 For n = 173529, A000001(173529) = A000001(173530) = 16. %e A298437 For n = 492830, A000001(492830) = A000001(492831) = 16. %p A298437 with(GroupTheory): for n from 1 to 10^6 do if [NumGroups(n), NumGroups(n+1)] = [16, 16] then print(n); fi; od; %Y A298437 Cf. A000001. Subsequence of A295161 (Numbers n having precisely 16 groups of order n). Numbers n having precisely k groups of orders n and n+1: A295230 (k=2), A295990 (k=4), A295991 (k=5), A295992 (k=6), A295993 (k=8), A298427 (k=9), A298428 (k=10), A295994 (k=11), A298429 (k=12), A298430 (k=13), A298431 (k=14), A295995 (k=15), this sequence (k=16). %K A298437 nonn,more %O A298437 1,1 %A A298437 _Muniru A Asiru_, Jan 19 2018