This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298463 #19 Jan 20 2024 16:14:20 %S A298463 70,3577,10795,36895,55777,70525,78547,125137,178365,208507,258130, %T A298463 329707,349692,394497,438751,468442,478555,499105,619852,663005, %U A298463 753667,827702,877455,900550,1025480,1085876,1169092,1201090,1211852,1233520,1339065,1508512 %N A298463 The first of two consecutive pentagonal numbers the sum of which is equal to the sum of two consecutive primes. %H A298463 Chai Wah Wu, <a href="/A298463/b298463.txt">Table of n, a(n) for n = 1..10000</a> %e A298463 70 is in the sequence because 70+92 (consecutive pentagonal numbers) = 162 = 79+83 (consecutive primes). %t A298463 Select[Partition[PolygonalNumber[5,Range[1500]],2,1],CompositeQ[Total[#]/2]&&Total[#] == NextPrime[ Total[#]/2]+NextPrime[Total[#]/2,-1]&][[;;,1]] (* _Harvey P. Dale_, Jan 20 2024 *) %o A298463 (PARI) L=List(); forprime(p=2, 1600000, q=nextprime(p+1); t=p+q; if(issquare(12*t-8, &sq) && (sq-2)%6==0, u=(sq-2)\6; listput(L, (3*u^2-u)/2))); Vec(L) %o A298463 (Python) %o A298463 from __future__ import division %o A298463 from sympy import prevprime, nextprime %o A298463 A298463_list, n, m = [], 1 ,6 %o A298463 while len(A298463_list) < 10000: %o A298463 k = prevprime(m//2) %o A298463 if k + nextprime(k) == m: %o A298463 A298463_list.append(n*(3*n-1)//2) %o A298463 n += 1 %o A298463 m += 6*n-1 # _Chai Wah Wu_, Jan 20 2018 %Y A298463 Cf. A000040, A000326, A001043, A061275, A298462, A298464, A298465, A298466. %K A298463 nonn %O A298463 1,1 %A A298463 _Colin Barker_, Jan 19 2018