This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298464 #12 Jan 22 2018 03:20:38 %S A298464 79,3643,10909,37123,56053,70849,78889,125551,178877,209063,258743, %T A298464 330409,350411,395261,439559,469279,479387,499969,620813,663997, %U A298464 754723,828811,878597,901709,1026709,1087147,1170397,1202429,1213189,1234873,1340477,1510013 %N A298464 The first of two consecutive primes the sum of which is equal to the sum of two consecutive pentagonal numbers. %H A298464 Chai Wah Wu, <a href="/A298464/b298464.txt">Table of n, a(n) for n = 1..10000</a> %e A298464 79 is in the sequence because 79+83 (consecutive primes) = 162 = 70+92 (consecutive pentagonal numbers). %t A298464 Block[{s = Total /@ Partition[PolygonalNumber[5, Range[10^3]], 2, 1], t}, t = Partition[Prime@ Range@ PrimePi[2 Last[s]], 2, 1]; Select[t, MemberQ[s, Total@ #] &][[All, 1]]] (* _Michael De Vlieger_, Jan 21 2018 *) %o A298464 (PARI) L=List(); forprime(p=2, 1600000, q=nextprime(p+1); t=p+q; if(issquare(12*t-8, &sq) && (sq-2)%6==0, u=(sq-2)\6; listput(L, p))); Vec(L) %o A298464 (Python) %o A298464 from __future__ import division %o A298464 from sympy import prevprime, nextprime %o A298464 A298464_list, n, m = [], 1 ,6 %o A298464 while len(A298464_list) < 10000: %o A298464 k = prevprime(m//2) %o A298464 if k + nextprime(k) == m: %o A298464 A298464_list.append(k) %o A298464 n += 1 %o A298464 m += 6*n-1 # _Chai Wah Wu_, Jan 20 2018 %Y A298464 Cf. A000040, A000326, A061275, A298462, A298463, A298465, A298466. %K A298464 nonn %O A298464 1,1 %A A298464 _Colin Barker_, Jan 19 2018