This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298478 #15 Feb 02 2021 18:20:53 %S A298478 1,1,1,3,3,5,13,15,23,34,95,106,176,241,374,942,1129,1760,2515,3711, %T A298478 5136,12857,14911,23814,33002,49141,65798,97056,209707,255042,389725, %U A298478 545290,790344,1071010,1525919,2043953,4272124,5110583,7772247,10611491,15447864,20496809 %N A298478 Number of unlabeled rooted trees with n nodes in which all positive outdegrees are different. %C A298478 a(n) is the number of labeled trees with sum of the labels equal to n-1 and the outdegree of every node less than or equal to the value of its label. - _Andrew Howroyd_, Feb 02 2021 %H A298478 Andrew Howroyd, <a href="/A298478/b298478.txt">Table of n, a(n) for n = 1..100</a> %e A298478 The a(7) = 13 trees: ((o(ooo))), ((oo(oo))), ((ooooo)), (o((ooo))), (o(oo(o))), (o(oooo)), ((o)(ooo)), (oo((oo))), (oo(o(o))), (o(o)(oo)), (ooo(oo)), (oooo(o)), (oooooo). %t A298478 krut[n_]:=krut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[krut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@Length/@Cases[#,{__},{0,Infinity}]&]]; %t A298478 Table[krut[n]//Length,{n,15}] %o A298478 (PARI) %o A298478 relabel(b)={my(w=hammingweight(b)); b = bitand((1<<w)-1, b); b + (((1 << (w-hammingweight(b))) - 1) << w)} %o A298478 a(n)={local(M=Map()); %o A298478 my(recurse(b,k) = if(!b, 1, b=relabel(b); my(hk=[b,k], z); if(!mapisdefined(M, hk, &z), %o A298478 z = if(k==0, %o A298478 sum(i=1, logint(b,2), if(bittest(b,i), self()(b-2^i, i-1))), %o A298478 sum(f=2^logint(b,2), b, if(!bitnegimply(f,b), self()(f,0)*self()(b-f,k-1))); %o A298478 ); %o A298478 mapput(M, hk, z)); z)); %o A298478 if( n==1, 1, my(t=0); for(np=1, sqrtint(2*n-2), forpart(p=n-1-binomial(np,2), t+=recurse(sum(i=1, #p, 2^(p[i]+i-1)), 0), , [np,np])); t); %o A298478 } \\ _Andrew Howroyd_, Feb 02 2021 %Y A298478 Cf. A000081, A001190, A001678, A004111, A032305, A124343, A290689, A295461, A298118, A298304, A298422, A298479. %K A298478 nonn %O A298478 1,4 %A A298478 _Gus Wiseman_, Jan 19 2018 %E A298478 a(27)-a(34) from _Robert G. Wilson v_, Jan 19 2018 %E A298478 Terms a(35) and beyond from _Andrew Howroyd_, Feb 02 2021