This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298479 #6 Jan 22 2018 03:07:19 %S A298479 1,2,4,6,7,8,12,16,19,24,28,32,38,42,48,52,53,56,57,64,68,74,84,96, %T A298479 104,106,107,112,128,131,134,136,152,159,163,168,178,192,208,212,224, %U A298479 228,256,262,263,272,296,304,311,318,336,356,384,393,416,446,448,456 %N A298479 Matula-Goebel numbers of rooted trees in which all positive outdegrees are different. %e A298479 Sequence of trees begins: %e A298479 1 o %e A298479 2 (o) %e A298479 4 (oo) %e A298479 6 (o(o)) %e A298479 7 ((oo)) %e A298479 8 (ooo) %e A298479 12 (oo(o)) %e A298479 16 (oooo) %e A298479 19 ((ooo)) %e A298479 24 (ooo(o)) %e A298479 28 (oo(oo)) %e A298479 32 (ooooo) %e A298479 38 (o(ooo)) %e A298479 42 (o(o)(oo)) %e A298479 48 (oooo(o)) %e A298479 52 (oo(o(o))) %e A298479 53 ((oooo)) %e A298479 56 (ooo(oo)) %e A298479 57 ((o)(ooo)) %e A298479 64 (oooooo) %e A298479 68 (oo((oo))) %e A298479 74 (o(oo(o))) %e A298479 84 (oo(o)(oo)) %e A298479 96 (ooooo(o)) %t A298479 MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A298479 doQ[n_]:=Or[n===1,UnsameQ@@Length/@Cases[MGtree[n],{__},{0,Infinity}]]; %t A298479 Select[Range[1000],doQ] %Y A298479 Cf. A000081, A001221, A004111, A007097, A032305, A061775, A111299, A276625, A290760, A297571, A298120, A298422, A298424, A298478. %K A298479 nonn %O A298479 1,2 %A A298479 _Gus Wiseman_, Jan 19 2018