This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298480 #36 Jul 22 2018 08:49:07 %S A298480 1,2,6,3,12,4,8,24,120,30,10,5,15,60,20,40,280,56,14,7,21,42,168,84, %T A298480 28,140,35,70,210,105,420,840,7560,1080,216,54,18,9,27,108,36,72,360, %U A298480 90,45,135,270,1890,378,126,63,189,756,252,504,1512,16632,1848,264 %N A298480 Lexicographically earliest sequence of distinct positive terms such that the Fermi-Dirac factorizations of two consecutive terms differ by exactly one factor. %C A298480 For Fermi-Dirac representation of n see A182979. - _N. J. A. Sloane_, Jul 21 2018 %C A298480 For any n > 0, either a(n)/a(n+1) or a(n+1)/a(n) belongs to A050376. %C A298480 This sequence has similarities with A282291; in both sequences, each pair of consecutive terms contains a term that divides the other. %H A298480 Rémy Sigrist, <a href="/A298480/b298480.txt">Table of n, a(n) for n = 1..10000</a> %H A298480 Rémy Sigrist, <a href="/A298480/a298480.gp.txt">PARI program for A298480</a> %F A298480 A000120(A052331(a(n)) XOR A052331(a(n+1))) = 1 for any n > 0 (where XOR denotes the bitwise XOR operator). %F A298480 Apparently, a(n) = A052330(A163252(n-1)) for any n > 0. %e A298480 The first terms, alongside a(n+1)/a(n), are: %e A298480 n a(n) a(n+1)/a(n) %e A298480 -- ---- ----------- %e A298480 1 1 2 %e A298480 2 2 3 %e A298480 3 6 1/2 %e A298480 4 3 2^2 %e A298480 5 12 1/3 %e A298480 6 4 2 %e A298480 7 8 3 %e A298480 8 24 5 %e A298480 9 120 1/2^2 %e A298480 10 30 1/3 %e A298480 11 10 1/2 %e A298480 12 5 3 %e A298480 13 15 2^2 %e A298480 14 60 1/3 %e A298480 15 20 2 %e A298480 16 40 7 %e A298480 17 280 1/5 %e A298480 18 56 1/2^2 %e A298480 19 14 1/2 %e A298480 20 7 3 %o A298480 (PARI) See Links section. %Y A298480 Cf. A000120, A050376, A052330, A052331, A282291, A182979. %K A298480 nonn %O A298480 1,2 %A A298480 _Rémy Sigrist_, Jul 21 2018