A298486 Square array T(n, k), n >= 0, k >= 0, read by antidiagonals upwards: T(n, k) = the (k+1)-th nonnegative number m such that n + m can be computed with carry in decimal base.
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 0, 1, 20, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 1
Offset: 0
Examples
Square array begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 ... ---+------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 ... <-- A001477 1| 0 1 2 3 4 5 6 7 8 10 11 ... 2| 0 1 2 3 4 5 6 7 10 11 12 ... 3| 0 1 2 3 4 5 6 10 11 12 13 ... 4| 0 1 2 3 4 5 10 11 12 13 14 ... 5| 0 1 2 3 4 10 11 12 13 14 20 ... 6| 0 1 2 3 10 11 12 13 20 21 22 ... 7| 0 1 2 10 11 12 20 21 22 30 31 ... 8| 0 1 10 11 20 21 30 31 40 41 50 ... 9| 0 10 20 30 40 50 60 70 80 90 100 ... <-- A008592 10| 0 1 2 3 4 5 6 7 8 9 10 ...
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..5150
Programs
-
PARI
T(n,k,{base=10}) = my (v=0, p=1); while (k, my (r=base - (n%base)); v += p*(k%r); n \= base; k \= r; p *= base); v
Comments