This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298511 #16 Dec 01 2023 05:24:54 %S A298511 1,1,-1,-15,49,1365,-7645,-311311,2475473,132652377,-1367593305, %T A298511 -90881245455,1151541572401,91341008892445,-1373222414339685, %U A298511 -126594821384553375,2202549127844351265,231390624855674406705,-4573116447815658471025,-539278542630309415030735 %N A298511 Central Lehmer-Comtet numbers of the first kind: a(n) = A008296(2n,n). %H A298511 Alois P. Heinz, <a href="/A298511/b298511.txt">Table of n, a(n) for n = 0..386</a> %F A298511 a(n) = (2*n)!/n! * [x^(2*n)] ((1+x)*log(1+x))^n. %F A298511 a(n) = Sum_{j=0..n} binomial(n+j,n) * n^j * Stirling1(2*n,n+j). %p A298511 b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0, %p A298511 (n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k))) %p A298511 end: %p A298511 a:= n-> b(2*n, n): %p A298511 seq(a(n), n=0..25); %t A298511 b[n_, k_] := b[n, k] = If[n == k, 1, If[k == 0, 0, %t A298511 (n-1) b[n-2, k-1] + b[n-1, k-1] + (k-n+1) b[n-1, k]]]; %t A298511 a[n_] := b[2n, n]; %t A298511 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Dec 01 2023, from Maple code *) %Y A298511 Cf. A008275, A008296, A048994. %K A298511 sign %O A298511 0,4 %A A298511 _Alois P. Heinz_, Jan 20 2018