cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298512 Decimal expansion of lim_ {n->oo} ((n + 1)*g - s(0) - s(1) - ... - s(n)), where g = (1 + sqrt (5))/2, s(n) = (s(n - 1) + 1)^(1/2), s(0) = 1.

Original entry on oeis.org

9, 1, 5, 0, 4, 9, 8, 4, 8, 0, 1, 5, 1, 3, 4, 9, 1, 4, 8, 4, 3, 6, 3, 1, 2, 1, 4, 6, 0, 3, 0, 0, 2, 1, 1, 6, 7, 5, 0, 8, 3, 2, 5, 8, 7, 5, 6, 6, 7, 0, 1, 2, 6, 4, 2, 9, 4, 8, 1, 6, 8, 0, 1, 4, 3, 8, 6, 5, 7, 6, 0, 3, 7, 9, 2, 8, 5, 2, 4, 1, 7, 4, 6, 3, 6, 2
Offset: 0

Views

Author

Clark Kimberling, Feb 11 2018

Keywords

Comments

Lim_{n->oo} s(n) = g = golden ratio, A001622. In the following guide to related sequences, the sequence gives the decimal expansion for lim_{n->oo} |(n+1)*g - s(0) - s(1) - ... - s(n)|, where s(n) = (s(n-1) + d)^p, and tau = (1+sqrt(5))/2.
***
sequence d p a(0) g
A298512 1 1/2 1 (1+sqrt(5))/2
A298513 1 1/2 2 (1+sqrt(5))/2
A298514 1 1/2 3 (1+sqrt(5))/2
A298515 1/2 1/2 1 (1+sqrt(3))/2
A298516 2 1/2 1 2
A298517 3 1/2 1 (1+sqrt(13))/2
A298518 1 1/3 1 1.3247...
A298519 1 1/3 2 1.3247...
A298520 1 1/3 3 1.3247...
A298521 1 2/3 1 2.1478...
A298522 tau 1/2 1 1.8667...
A298523 tau 1/2 2 1.8667...
A298524 sqrt(2) 1/2 1 1.7900...
A298525 sqrt(2) 1/2 2 1.7900...
A298526 sqrt(3) 1/2 1 1.9078...
A298527 sqrt(3) 1/2 2 1.9078...
A298528 e 1/2 1 2.2228...
A298529 e 1/2 e 2.2228...
A298530 Pi 1/2 1 2.3416...
A298531 Pi 1/2 Pi 2.3416...
A298532 tau 1/2 tau 2.3416...

Examples

			s(n) = (1, 1.4142..., 1.5537..., 1.5980..., 1.6118..., ...) with limit g = 1.618... = (1+sqrt(5))/2.
((n + 1)*g - s(0) - s(1) - ... - s(n)) -> 0.9150498480151349148436312146030...
		

Crossrefs

Programs

  • Mathematica
    s[0] = 1; d = 1; p = 1/2; s[n_] := s[n] = (s[n - 1] + d)^p
    N[Table[s[n], {n, 0, 30}]]
    z = 200 ; g = GoldenRatio; s = N[(z + 1)*g - Sum[s[n], {n, 0, z}], 150 ];
    RealDigits[s, 10][[1]];  (* A298512 *)

A298514 Decimal expansion of lim_ {n->oo} (s(0) + s(1) + ... + s(n) - (n + 1)*g), where g = (1 + sqrt (5))/2, s(n) = (s(n - 1) + 1)^(1/2), s(0) = 3.

Original entry on oeis.org

1, 9, 2, 8, 3, 3, 8, 3, 4, 6, 0, 2, 9, 9, 9, 3, 6, 0, 4, 6, 6, 1, 2, 5, 7, 2, 2, 0, 8, 2, 0, 5, 2, 6, 6, 7, 0, 3, 0, 8, 4, 4, 5, 5, 9, 9, 4, 0, 1, 1, 1, 7, 7, 6, 2, 4, 3, 1, 4, 7, 1, 9, 3, 1, 7, 7, 3, 8, 0, 8, 7, 6, 5, 5, 3, 1, 0, 3, 7, 2, 0, 3, 7, 0, 3, 4
Offset: 1

Views

Author

Clark Kimberling, Feb 11 2018

Keywords

Comments

(lim_ {n->oo} s(n)) = g = golden ratio, A001622. See A298512 for a guide to related sequences.

Examples

			s(n) -> g = (1+sqrt(5))/2, as at A001622.
s(0) + s(1) + ... + s(n) - (n + 1)*g -> 1.928338346029993604661257220820526670...
		

Crossrefs

Programs

  • Mathematica
    s[0] = 3; d = 1; p = 1/2; s[n_] := s[n] = (s[n - 1] + d)^p
    N[Table[s[n], {n, 0, 30}]]
    z = 200 ; g = GoldenRatio; s = N[-(z + 1)*g + Sum[s[n], {n, 0, z}], 150 ];
    RealDigits[s, 10][[1]];  (* A298514 *)
Showing 1-2 of 2 results.