A298512 Decimal expansion of lim_ {n->oo} ((n + 1)*g - s(0) - s(1) - ... - s(n)), where g = (1 + sqrt (5))/2, s(n) = (s(n - 1) + 1)^(1/2), s(0) = 1.
9, 1, 5, 0, 4, 9, 8, 4, 8, 0, 1, 5, 1, 3, 4, 9, 1, 4, 8, 4, 3, 6, 3, 1, 2, 1, 4, 6, 0, 3, 0, 0, 2, 1, 1, 6, 7, 5, 0, 8, 3, 2, 5, 8, 7, 5, 6, 6, 7, 0, 1, 2, 6, 4, 2, 9, 4, 8, 1, 6, 8, 0, 1, 4, 3, 8, 6, 5, 7, 6, 0, 3, 7, 9, 2, 8, 5, 2, 4, 1, 7, 4, 6, 3, 6, 2
Offset: 0
Examples
s(n) = (1, 1.4142..., 1.5537..., 1.5980..., 1.6118..., ...) with limit g = 1.618... = (1+sqrt(5))/2. ((n + 1)*g - s(0) - s(1) - ... - s(n)) -> 0.9150498480151349148436312146030...
Programs
-
Mathematica
s[0] = 1; d = 1; p = 1/2; s[n_] := s[n] = (s[n - 1] + d)^p N[Table[s[n], {n, 0, 30}]] z = 200 ; g = GoldenRatio; s = N[(z + 1)*g - Sum[s[n], {n, 0, z}], 150 ]; RealDigits[s, 10][[1]]; (* A298512 *)
Comments